Kerogen nanoscale structure and CO 2 adsorption in shale micropores

Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.3920
Hauptverfasser: Gonciaruk, Aleksandra, Hall, Matthew R, Fay, Michael W, Parmenter, Christopher D J, Vane, Christopher H, Khlobystov, Andrei N, Ripepi, Nino
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3920
container_title Scientific reports
container_volume 11
creator Gonciaruk, Aleksandra
Hall, Matthew R
Fay, Michael W
Parmenter, Christopher D J
Vane, Christopher H
Khlobystov, Andrei N
Ripepi, Nino
description Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33594091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33594091</sourcerecordid><originalsourceid>FETCH-pubmed_primary_335940913</originalsourceid><addsrcrecordid>eNqFjbsKwkAQAA9BTND8guwPBJK7pLg6KIKFjX04k1VPcg92L4V_r4LWTjPNwCxELqumLaWSMhMF86N600rd1HolMqVa3VS6zkV3RAo39OCNDzyYCYETzUOaCcH4EboTSDAjB4rJBg_WA98_mbMDhRgIeSOWVzMxFl-vxXa_O3eHMs4Xh2MfyTpDz_53VX-DF9GrN_8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kerogen nanoscale structure and CO 2 adsorption in shale micropores</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gonciaruk, Aleksandra ; Hall, Matthew R ; Fay, Michael W ; Parmenter, Christopher D J ; Vane, Christopher H ; Khlobystov, Andrei N ; Ripepi, Nino</creator><creatorcontrib>Gonciaruk, Aleksandra ; Hall, Matthew R ; Fay, Michael W ; Parmenter, Christopher D J ; Vane, Christopher H ; Khlobystov, Andrei N ; Ripepi, Nino</creatorcontrib><description>Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.</description><identifier>EISSN: 2045-2322</identifier><identifier>PMID: 33594091</identifier><language>eng</language><publisher>England</publisher><ispartof>Scientific reports, 2021-02, Vol.11 (1), p.3920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33594091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonciaruk, Aleksandra</creatorcontrib><creatorcontrib>Hall, Matthew R</creatorcontrib><creatorcontrib>Fay, Michael W</creatorcontrib><creatorcontrib>Parmenter, Christopher D J</creatorcontrib><creatorcontrib>Vane, Christopher H</creatorcontrib><creatorcontrib>Khlobystov, Andrei N</creatorcontrib><creatorcontrib>Ripepi, Nino</creatorcontrib><title>Kerogen nanoscale structure and CO 2 adsorption in shale micropores</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjbsKwkAQAA9BTND8guwPBJK7pLg6KIKFjX04k1VPcg92L4V_r4LWTjPNwCxELqumLaWSMhMF86N600rd1HolMqVa3VS6zkV3RAo39OCNDzyYCYETzUOaCcH4EboTSDAjB4rJBg_WA98_mbMDhRgIeSOWVzMxFl-vxXa_O3eHMs4Xh2MfyTpDz_53VX-DF9GrN_8</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Gonciaruk, Aleksandra</creator><creator>Hall, Matthew R</creator><creator>Fay, Michael W</creator><creator>Parmenter, Christopher D J</creator><creator>Vane, Christopher H</creator><creator>Khlobystov, Andrei N</creator><creator>Ripepi, Nino</creator><scope>NPM</scope></search><sort><creationdate>20210216</creationdate><title>Kerogen nanoscale structure and CO 2 adsorption in shale micropores</title><author>Gonciaruk, Aleksandra ; Hall, Matthew R ; Fay, Michael W ; Parmenter, Christopher D J ; Vane, Christopher H ; Khlobystov, Andrei N ; Ripepi, Nino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_335940913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonciaruk, Aleksandra</creatorcontrib><creatorcontrib>Hall, Matthew R</creatorcontrib><creatorcontrib>Fay, Michael W</creatorcontrib><creatorcontrib>Parmenter, Christopher D J</creatorcontrib><creatorcontrib>Vane, Christopher H</creatorcontrib><creatorcontrib>Khlobystov, Andrei N</creatorcontrib><creatorcontrib>Ripepi, Nino</creatorcontrib><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonciaruk, Aleksandra</au><au>Hall, Matthew R</au><au>Fay, Michael W</au><au>Parmenter, Christopher D J</au><au>Vane, Christopher H</au><au>Khlobystov, Andrei N</au><au>Ripepi, Nino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kerogen nanoscale structure and CO 2 adsorption in shale micropores</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2021-02-16</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>3920</spage><pages>3920-</pages><eissn>2045-2322</eissn><abstract>Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.</abstract><cop>England</cop><pmid>33594091</pmid></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2021-02, Vol.11 (1), p.3920
issn 2045-2322
language eng
recordid cdi_pubmed_primary_33594091
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title Kerogen nanoscale structure and CO 2 adsorption in shale micropores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kerogen%20nanoscale%20structure%20and%20CO%202%20adsorption%20in%20shale%20micropores&rft.jtitle=Scientific%20reports&rft.au=Gonciaruk,%20Aleksandra&rft.date=2021-02-16&rft.volume=11&rft.issue=1&rft.spage=3920&rft.pages=3920-&rft.eissn=2045-2322&rft_id=info:doi/&rft_dat=%3Cpubmed%3E33594091%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33594091&rfr_iscdi=true