Multi‐chemical analysis combined with chemometrics to characterize PDO and PGI Italian apples

BACKGROUND The use of PDO (protected designation of origin) and PGI (protected geographical indication) labels allows to protect and promote agricultural products characterized by unique features related to the place of origin and traditional know‐how. However, the presence of non‐authentic products...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2021-09, Vol.101 (12), p.5106-5115
Hauptverfasser: Aguzzoni, Agnese, Bassi, Michele, Pignotti, Emanuela, Robatscher, Peter, Scandellari, Francesca, Tirler, Werner, Tagliavini, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND The use of PDO (protected designation of origin) and PGI (protected geographical indication) labels allows to protect and promote agricultural products characterized by unique features related to the place of origin and traditional know‐how. However, the presence of non‐authentic products in the market represents a fraud that can be tackled applying analytical techniques combined with chemometric analysis. In this study, we applied multi‐element and multi‐isotope analysis to characterize PDO and PGI apples cultivated in northern Italy, comparing them with Italian apples without labels of geographical indications. RESULTS The multi‐element and multi‐isotope approach allowed to characterize the apples cultivated in northern Italy. Despite a significant effect of the sampling sites on the apple composition, the comparison of the multi‐chemical fingerprint of the apples significantly varied among cultivation areas. Results of this characterization were used to classify samples according to their cultivation area applying a linear discriminant analysis (LDA). Outputs of the LDA showed that correct sample classification can be successfully achieved (balanced accuracy > 96%). Moreover, using a selection of variables, it was possible to correctly classify samples also at regional level. CONCLUSION The presented evidences indicate that the multi‐element and multi‐isotope fingerprint can be successfully applied to traceability studies. The combination of this characterization with chemometric tools allows the classification of Italian apples based on their origin both on a national and regional scale. This approach represents an interesting tool to enhance and protect PDO and PGI Italian products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.11156