Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces

The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2021-04, Vol.284, p.111969-111969, Article 111969
Hauptverfasser: Torita, Hiroyuki, Masaka, Kazuhiko, Tanaka, Norio, Iwasaki, Kenta, Hasui, Satosi, Hayamizu, Masato, Nakata, Yasutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111969
container_issue
container_start_page 111969
container_title Journal of environmental management
container_volume 284
creator Torita, Hiroyuki
Masaka, Kazuhiko
Tanaka, Norio
Iwasaki, Kenta
Hasui, Satosi
Hayamizu, Masato
Nakata, Yasutaka
description The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future events. As a tsunami countermeasure, coastal forests have been acknowledged to considerably reduce tsunami energy and decrease tsunami-related damage. In the Great East Japan tsunami, many trees of coastal forests were damaged by trunk breakage and overturning. This led to further infrastructural damage as the debris were transported landward and seaward by floodwaters. To better protect coastal areas from the secondary effects of tsunamis and reduce tsunami energy, coastal forests must exhibit higher resistance. This research investigated the effect of forestry management by applying different levels of thinning of trees as a means of resistance to tree damage under tsunami events. In October of 1999, study plots were established with different thinning intensities in a mature coastal forest of Pinus thunbergii trees. As a useful indicator of the resistance of coastal forests to tsunamis, the threshold tsunami velocities at which trees in these study plots begin to be destroyed were calculated using a mechanistic model. The results revealed that trunk diameter is the most important parameter for increasing resistance to tsunamis. An analysis of the generalized linear model for diameter growth showed that heavy thinning best enhanced the diameter growth. Therefore, heavy thinning is the most effective approach to increasing the resistance of trees to tsunamis. Considering the relationship between resistance to tsunami and inundation depth, the resistance to tsunami decreased rapidly with increasing inundation depth in all plots. Differences in the resistance to the tsunami were not observed across all plots when the inundation depth exceeded the mean tree height. •Threshold tsunami velocities were calculated to assess resistance to tsunamis.•Heavy thinning is effective in increasing resistance to tsunamis.•Resistance to tsunami decreased rapidly with an increase in inundation depth.•No difference in resistance was found for depths over tree height among all plots.•A limitation to the improvement of tsunami resistance exists.
doi_str_mv 10.1016/j.jenvman.2021.111969
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33561759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479721000311</els_id><sourcerecordid>2488171398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-fe04ca52af56140a2b7865e6d4fa028fbc7c91a35046d75d889a446f913103303</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EoreFRwB5iYQSPHHiJCtUXUFBqkQXsLYcZ1x8ldjFdlrxCjw1Dgndwso_5ztjzxxCXgErgYF4dypP6O5n5cqKVVACQC_6J-QArG-KTnD2lBwYZ1DUbd-ekfMYT4wxXkH7nJxx3ghom_5Afl3GiDHO6BL1hqbvSNEY1PvJOmfdLfXujxIw2piU07iqN9YtMd8vbsBway29UWFSqaQpIEZqHZ1VWgJS7VV2TdT4XCBli6cpLk7NlpppseMqaIwvyDOjpogv9_WCfPv44evxU3H95erz8fK60DWHVBhktVZNpUzuoWaqGtpONCjG2ihWdWbQre5B8YbVYmybset6VdfC9MCBcc74BXmz1b0L_seSfyRnGzVOk3LolyiruuugBd53GW02VAcfY0Aj74KdVfgpgck1BnmSewxyjUFuMWTf6_2JZZhxfHT9nXsG3m7AAw7eRG0xD_URy0GJCkQDgq3bTHf_Tx9tUsl6d_SLS9n6frNinui9xSB3-2hDTlmO3v6jl9_qNr3y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488171398</pqid></control><display><type>article</type><title>Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Torita, Hiroyuki ; Masaka, Kazuhiko ; Tanaka, Norio ; Iwasaki, Kenta ; Hasui, Satosi ; Hayamizu, Masato ; Nakata, Yasutaka</creator><creatorcontrib>Torita, Hiroyuki ; Masaka, Kazuhiko ; Tanaka, Norio ; Iwasaki, Kenta ; Hasui, Satosi ; Hayamizu, Masato ; Nakata, Yasutaka</creatorcontrib><description>The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future events. As a tsunami countermeasure, coastal forests have been acknowledged to considerably reduce tsunami energy and decrease tsunami-related damage. In the Great East Japan tsunami, many trees of coastal forests were damaged by trunk breakage and overturning. This led to further infrastructural damage as the debris were transported landward and seaward by floodwaters. To better protect coastal areas from the secondary effects of tsunamis and reduce tsunami energy, coastal forests must exhibit higher resistance. This research investigated the effect of forestry management by applying different levels of thinning of trees as a means of resistance to tree damage under tsunami events. In October of 1999, study plots were established with different thinning intensities in a mature coastal forest of Pinus thunbergii trees. As a useful indicator of the resistance of coastal forests to tsunamis, the threshold tsunami velocities at which trees in these study plots begin to be destroyed were calculated using a mechanistic model. The results revealed that trunk diameter is the most important parameter for increasing resistance to tsunamis. An analysis of the generalized linear model for diameter growth showed that heavy thinning best enhanced the diameter growth. Therefore, heavy thinning is the most effective approach to increasing the resistance of trees to tsunamis. Considering the relationship between resistance to tsunami and inundation depth, the resistance to tsunami decreased rapidly with increasing inundation depth in all plots. Differences in the resistance to the tsunami were not observed across all plots when the inundation depth exceeded the mean tree height. •Threshold tsunami velocities were calculated to assess resistance to tsunamis.•Heavy thinning is effective in increasing resistance to tsunamis.•Resistance to tsunami decreased rapidly with an increase in inundation depth.•No difference in resistance was found for depths over tree height among all plots.•A limitation to the improvement of tsunami resistance exists.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2021.111969</identifier><identifier>PMID: 33561759</identifier><language>eng</language><publisher>LONDON: Elsevier Ltd</publisher><subject>Coastal forest ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Forests ; Japan ; Life Sciences &amp; Biomedicine ; Mechanistic model ; Pacific Ocean ; Pinus ; Resistance to tsunami ; Science &amp; Technology ; Thinning intensity ; Threshold tsunami velocity ; Trees ; Tsunami ; Tsunamis</subject><ispartof>Journal of environmental management, 2021-04, Vol.284, p.111969-111969, Article 111969</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621651600006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c431t-fe04ca52af56140a2b7865e6d4fa028fbc7c91a35046d75d889a446f913103303</citedby><cites>FETCH-LOGICAL-c431t-fe04ca52af56140a2b7865e6d4fa028fbc7c91a35046d75d889a446f913103303</cites><orcidid>0000-0002-7344-920X ; 0000-0002-1184-1345 ; 0000-0002-4186-0328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvman.2021.111969$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33561759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torita, Hiroyuki</creatorcontrib><creatorcontrib>Masaka, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Norio</creatorcontrib><creatorcontrib>Iwasaki, Kenta</creatorcontrib><creatorcontrib>Hasui, Satosi</creatorcontrib><creatorcontrib>Hayamizu, Masato</creatorcontrib><creatorcontrib>Nakata, Yasutaka</creatorcontrib><title>Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces</title><title>Journal of environmental management</title><addtitle>J ENVIRON MANAGE</addtitle><addtitle>J Environ Manage</addtitle><description>The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future events. As a tsunami countermeasure, coastal forests have been acknowledged to considerably reduce tsunami energy and decrease tsunami-related damage. In the Great East Japan tsunami, many trees of coastal forests were damaged by trunk breakage and overturning. This led to further infrastructural damage as the debris were transported landward and seaward by floodwaters. To better protect coastal areas from the secondary effects of tsunamis and reduce tsunami energy, coastal forests must exhibit higher resistance. This research investigated the effect of forestry management by applying different levels of thinning of trees as a means of resistance to tree damage under tsunami events. In October of 1999, study plots were established with different thinning intensities in a mature coastal forest of Pinus thunbergii trees. As a useful indicator of the resistance of coastal forests to tsunamis, the threshold tsunami velocities at which trees in these study plots begin to be destroyed were calculated using a mechanistic model. The results revealed that trunk diameter is the most important parameter for increasing resistance to tsunamis. An analysis of the generalized linear model for diameter growth showed that heavy thinning best enhanced the diameter growth. Therefore, heavy thinning is the most effective approach to increasing the resistance of trees to tsunamis. Considering the relationship between resistance to tsunami and inundation depth, the resistance to tsunami decreased rapidly with increasing inundation depth in all plots. Differences in the resistance to the tsunami were not observed across all plots when the inundation depth exceeded the mean tree height. •Threshold tsunami velocities were calculated to assess resistance to tsunamis.•Heavy thinning is effective in increasing resistance to tsunamis.•Resistance to tsunami decreased rapidly with an increase in inundation depth.•No difference in resistance was found for depths over tree height among all plots.•A limitation to the improvement of tsunami resistance exists.</description><subject>Coastal forest</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Forests</subject><subject>Japan</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mechanistic model</subject><subject>Pacific Ocean</subject><subject>Pinus</subject><subject>Resistance to tsunami</subject><subject>Science &amp; Technology</subject><subject>Thinning intensity</subject><subject>Threshold tsunami velocity</subject><subject>Trees</subject><subject>Tsunami</subject><subject>Tsunamis</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EoreFRwB5iYQSPHHiJCtUXUFBqkQXsLYcZ1x8ldjFdlrxCjw1Dgndwso_5ztjzxxCXgErgYF4dypP6O5n5cqKVVACQC_6J-QArG-KTnD2lBwYZ1DUbd-ekfMYT4wxXkH7nJxx3ghom_5Afl3GiDHO6BL1hqbvSNEY1PvJOmfdLfXujxIw2piU07iqN9YtMd8vbsBway29UWFSqaQpIEZqHZ1VWgJS7VV2TdT4XCBli6cpLk7NlpppseMqaIwvyDOjpogv9_WCfPv44evxU3H95erz8fK60DWHVBhktVZNpUzuoWaqGtpONCjG2ihWdWbQre5B8YbVYmybset6VdfC9MCBcc74BXmz1b0L_seSfyRnGzVOk3LolyiruuugBd53GW02VAcfY0Aj74KdVfgpgck1BnmSewxyjUFuMWTf6_2JZZhxfHT9nXsG3m7AAw7eRG0xD_URy0GJCkQDgq3bTHf_Tx9tUsl6d_SLS9n6frNinui9xSB3-2hDTlmO3v6jl9_qNr3y</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Torita, Hiroyuki</creator><creator>Masaka, Kazuhiko</creator><creator>Tanaka, Norio</creator><creator>Iwasaki, Kenta</creator><creator>Hasui, Satosi</creator><creator>Hayamizu, Masato</creator><creator>Nakata, Yasutaka</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7344-920X</orcidid><orcidid>https://orcid.org/0000-0002-1184-1345</orcidid><orcidid>https://orcid.org/0000-0002-4186-0328</orcidid></search><sort><creationdate>20210415</creationdate><title>Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces</title><author>Torita, Hiroyuki ; Masaka, Kazuhiko ; Tanaka, Norio ; Iwasaki, Kenta ; Hasui, Satosi ; Hayamizu, Masato ; Nakata, Yasutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-fe04ca52af56140a2b7865e6d4fa028fbc7c91a35046d75d889a446f913103303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coastal forest</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Forests</topic><topic>Japan</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mechanistic model</topic><topic>Pacific Ocean</topic><topic>Pinus</topic><topic>Resistance to tsunami</topic><topic>Science &amp; Technology</topic><topic>Thinning intensity</topic><topic>Threshold tsunami velocity</topic><topic>Trees</topic><topic>Tsunami</topic><topic>Tsunamis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torita, Hiroyuki</creatorcontrib><creatorcontrib>Masaka, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Norio</creatorcontrib><creatorcontrib>Iwasaki, Kenta</creatorcontrib><creatorcontrib>Hasui, Satosi</creatorcontrib><creatorcontrib>Hayamizu, Masato</creatorcontrib><creatorcontrib>Nakata, Yasutaka</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torita, Hiroyuki</au><au>Masaka, Kazuhiko</au><au>Tanaka, Norio</au><au>Iwasaki, Kenta</au><au>Hasui, Satosi</au><au>Hayamizu, Masato</au><au>Nakata, Yasutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces</atitle><jtitle>Journal of environmental management</jtitle><stitle>J ENVIRON MANAGE</stitle><addtitle>J Environ Manage</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>284</volume><spage>111969</spage><epage>111969</epage><pages>111969-111969</pages><artnum>111969</artnum><issn>0301-4797</issn><eissn>1095-8630</eissn><abstract>The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future events. As a tsunami countermeasure, coastal forests have been acknowledged to considerably reduce tsunami energy and decrease tsunami-related damage. In the Great East Japan tsunami, many trees of coastal forests were damaged by trunk breakage and overturning. This led to further infrastructural damage as the debris were transported landward and seaward by floodwaters. To better protect coastal areas from the secondary effects of tsunamis and reduce tsunami energy, coastal forests must exhibit higher resistance. This research investigated the effect of forestry management by applying different levels of thinning of trees as a means of resistance to tree damage under tsunami events. In October of 1999, study plots were established with different thinning intensities in a mature coastal forest of Pinus thunbergii trees. As a useful indicator of the resistance of coastal forests to tsunamis, the threshold tsunami velocities at which trees in these study plots begin to be destroyed were calculated using a mechanistic model. The results revealed that trunk diameter is the most important parameter for increasing resistance to tsunamis. An analysis of the generalized linear model for diameter growth showed that heavy thinning best enhanced the diameter growth. Therefore, heavy thinning is the most effective approach to increasing the resistance of trees to tsunamis. Considering the relationship between resistance to tsunami and inundation depth, the resistance to tsunami decreased rapidly with increasing inundation depth in all plots. Differences in the resistance to the tsunami were not observed across all plots when the inundation depth exceeded the mean tree height. •Threshold tsunami velocities were calculated to assess resistance to tsunamis.•Heavy thinning is effective in increasing resistance to tsunamis.•Resistance to tsunami decreased rapidly with an increase in inundation depth.•No difference in resistance was found for depths over tree height among all plots.•A limitation to the improvement of tsunami resistance exists.</abstract><cop>LONDON</cop><pub>Elsevier Ltd</pub><pmid>33561759</pmid><doi>10.1016/j.jenvman.2021.111969</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7344-920X</orcidid><orcidid>https://orcid.org/0000-0002-1184-1345</orcidid><orcidid>https://orcid.org/0000-0002-4186-0328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2021-04, Vol.284, p.111969-111969, Article 111969
issn 0301-4797
1095-8630
language eng
recordid cdi_pubmed_primary_33561759
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Coastal forest
Environmental Sciences
Environmental Sciences & Ecology
Forests
Japan
Life Sciences & Biomedicine
Mechanistic model
Pacific Ocean
Pinus
Resistance to tsunami
Science & Technology
Thinning intensity
Threshold tsunami velocity
Trees
Tsunami
Tsunamis
title Assessment of the effect of thinning on the resistance of Pinus thunbergii Parlat. trees in mature coastal forests to tsunami fluid forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20effect%20of%20thinning%20on%20the%20resistance%20of%20Pinus%20thunbergii%20Parlat.%20trees%20in%20mature%20coastal%20forests%20to%20tsunami%20fluid%20forces&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Torita,%20Hiroyuki&rft.date=2021-04-15&rft.volume=284&rft.spage=111969&rft.epage=111969&rft.pages=111969-111969&rft.artnum=111969&rft.issn=0301-4797&rft.eissn=1095-8630&rft_id=info:doi/10.1016/j.jenvman.2021.111969&rft_dat=%3Cproquest_pubme%3E2488171398%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488171398&rft_id=info:pmid/33561759&rft_els_id=S0301479721000311&rfr_iscdi=true