Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms

In the linear regime and in the absence of mean flow, the impedance of perforated liners is driven by visco-thermal effects. In this paper, two numerical models are employed for predicting these visco-thermal losses. The first model is the linearized compressible Navier–Stokes equations (LNSE), solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-01, Vol.149 (1), p.16-27
Hauptverfasser: Billard, R., Tissot, G., Gabard, G., Versaevel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 16
container_title The Journal of the Acoustical Society of America
container_volume 149
creator Billard, R.
Tissot, G.
Gabard, G.
Versaevel, M.
description In the linear regime and in the absence of mean flow, the impedance of perforated liners is driven by visco-thermal effects. In this paper, two numerical models are employed for predicting these visco-thermal losses. The first model is the linearized compressible Navier–Stokes equations (LNSE), solved in the frequency domain. The second model is the Helmholtz equation with a visco-thermal boundary condition, accounting for the influence of the acoustic boundary layers. These models are compared and validated against measurements. The quantitative analysis of the dissipation rate due to viscosity, computed from the LNSE solutions of four perforated plates, highlights significant differences between the edge effects of a macro- and a micro-perforated plate. In the latter case, a jet is present at the entrances of the perforation. In contrast, the proposed numerical method to calculate the impedance of perforated liners, based on the Helmholtz equation and a visco-thermal boundary condition, is found to be computationally cheaper and to provide reliable predictions.
doi_str_mv 10.1121/10.0002973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33514166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483813442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-44995eb718b5c4cb2e5908b40b12beb83083dbc42360758ab80db9ded1de05eb3</originalsourceid><addsrcrecordid>eNp9kUtPxCAQx4nR6Lp68QOYHn2kCgW64G2z8ZVs9KLnBug0i-lLpjXx28s-9Ohp4J8fvwkzhJwxesNYxm5jpZRmesb3yITJjKZKZmKfTGLKUqHz_IgcI37Eq1RcH5IjziUTLM8npHoZGwjemTpB34y1GXzXYtJVSQ-h6oIZoEz6GENS-xYC3iXz1tTf6DfQsILky6Pr0ngKTbSUHtH3G03SgFuZ1mODJ-SgMjXC6a5OyfvD_dviKV2-Pj4v5svUcc2HVAitJdgZU1Y64WwGUlNlBbUss2AVp4qX1omM53QmlbGKllaXULISaHzIp-Ry612ZuuiDb0z4Ljrji6f5slhnlEuqpeRfLLIXW7YP3ecIOBRN_AnUtWmhG7HIhOKKcRG7TcnVFnWhQwxQ_bkZLdY7WNfdDiJ8vvOOtoHyD_0degSutwA6P2wm9Z_uB724jwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483813442</pqid></control><display><type>article</type><title>Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Billard, R. ; Tissot, G. ; Gabard, G. ; Versaevel, M.</creator><creatorcontrib>Billard, R. ; Tissot, G. ; Gabard, G. ; Versaevel, M.</creatorcontrib><description>In the linear regime and in the absence of mean flow, the impedance of perforated liners is driven by visco-thermal effects. In this paper, two numerical models are employed for predicting these visco-thermal losses. The first model is the linearized compressible Navier–Stokes equations (LNSE), solved in the frequency domain. The second model is the Helmholtz equation with a visco-thermal boundary condition, accounting for the influence of the acoustic boundary layers. These models are compared and validated against measurements. The quantitative analysis of the dissipation rate due to viscosity, computed from the LNSE solutions of four perforated plates, highlights significant differences between the edge effects of a macro- and a micro-perforated plate. In the latter case, a jet is present at the entrances of the perforation. In contrast, the proposed numerical method to calculate the impedance of perforated liners, based on the Helmholtz equation and a visco-thermal boundary condition, is found to be computationally cheaper and to provide reliable predictions.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0002973</identifier><identifier>PMID: 33514166</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Engineering Sciences</subject><ispartof>The Journal of the Acoustical Society of America, 2021-01, Vol.149 (1), p.16-27</ispartof><rights>Acoustical Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-44995eb718b5c4cb2e5908b40b12beb83083dbc42360758ab80db9ded1de05eb3</citedby><cites>FETCH-LOGICAL-c393t-44995eb718b5c4cb2e5908b40b12beb83083dbc42360758ab80db9ded1de05eb3</cites><orcidid>0000-0002-1527-4261 ; 0000-0002-0075-0894 ; s0000000200750894 ; s0000000215274261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0002973$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,230,314,776,780,790,881,1559,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33514166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-03509553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Billard, R.</creatorcontrib><creatorcontrib>Tissot, G.</creatorcontrib><creatorcontrib>Gabard, G.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><title>Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In the linear regime and in the absence of mean flow, the impedance of perforated liners is driven by visco-thermal effects. In this paper, two numerical models are employed for predicting these visco-thermal losses. The first model is the linearized compressible Navier–Stokes equations (LNSE), solved in the frequency domain. The second model is the Helmholtz equation with a visco-thermal boundary condition, accounting for the influence of the acoustic boundary layers. These models are compared and validated against measurements. The quantitative analysis of the dissipation rate due to viscosity, computed from the LNSE solutions of four perforated plates, highlights significant differences between the edge effects of a macro- and a micro-perforated plate. In the latter case, a jet is present at the entrances of the perforation. In contrast, the proposed numerical method to calculate the impedance of perforated liners, based on the Helmholtz equation and a visco-thermal boundary condition, is found to be computationally cheaper and to provide reliable predictions.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAQx4nR6Lp68QOYHn2kCgW64G2z8ZVs9KLnBug0i-lLpjXx28s-9Ohp4J8fvwkzhJwxesNYxm5jpZRmesb3yITJjKZKZmKfTGLKUqHz_IgcI37Eq1RcH5IjziUTLM8npHoZGwjemTpB34y1GXzXYtJVSQ-h6oIZoEz6GENS-xYC3iXz1tTf6DfQsILky6Pr0ngKTbSUHtH3G03SgFuZ1mODJ-SgMjXC6a5OyfvD_dviKV2-Pj4v5svUcc2HVAitJdgZU1Y64WwGUlNlBbUss2AVp4qX1omM53QmlbGKllaXULISaHzIp-Ry612ZuuiDb0z4Ljrji6f5slhnlEuqpeRfLLIXW7YP3ecIOBRN_AnUtWmhG7HIhOKKcRG7TcnVFnWhQwxQ_bkZLdY7WNfdDiJ8vvOOtoHyD_0degSutwA6P2wm9Z_uB724jwc</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Billard, R.</creator><creator>Tissot, G.</creator><creator>Gabard, G.</creator><creator>Versaevel, M.</creator><general>Acoustical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1527-4261</orcidid><orcidid>https://orcid.org/0000-0002-0075-0894</orcidid><orcidid>https://orcid.org/s0000000200750894</orcidid><orcidid>https://orcid.org/s0000000215274261</orcidid></search><sort><creationdate>202101</creationdate><title>Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms</title><author>Billard, R. ; Tissot, G. ; Gabard, G. ; Versaevel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-44995eb718b5c4cb2e5908b40b12beb83083dbc42360758ab80db9ded1de05eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billard, R.</creatorcontrib><creatorcontrib>Tissot, G.</creatorcontrib><creatorcontrib>Gabard, G.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billard, R.</au><au>Tissot, G.</au><au>Gabard, G.</au><au>Versaevel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2021-01</date><risdate>2021</risdate><volume>149</volume><issue>1</issue><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In the linear regime and in the absence of mean flow, the impedance of perforated liners is driven by visco-thermal effects. In this paper, two numerical models are employed for predicting these visco-thermal losses. The first model is the linearized compressible Navier–Stokes equations (LNSE), solved in the frequency domain. The second model is the Helmholtz equation with a visco-thermal boundary condition, accounting for the influence of the acoustic boundary layers. These models are compared and validated against measurements. The quantitative analysis of the dissipation rate due to viscosity, computed from the LNSE solutions of four perforated plates, highlights significant differences between the edge effects of a macro- and a micro-perforated plate. In the latter case, a jet is present at the entrances of the perforation. In contrast, the proposed numerical method to calculate the impedance of perforated liners, based on the Helmholtz equation and a visco-thermal boundary condition, is found to be computationally cheaper and to provide reliable predictions.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>33514166</pmid><doi>10.1121/10.0002973</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1527-4261</orcidid><orcidid>https://orcid.org/0000-0002-0075-0894</orcidid><orcidid>https://orcid.org/s0000000200750894</orcidid><orcidid>https://orcid.org/s0000000215274261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-01, Vol.149 (1), p.16-27
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmed_primary_33514166
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
subjects Acoustics
Engineering Sciences
title Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20perforated%20plate%20liners:%20Analysis%20of%20the%20visco-thermal%20dissipation%20mechanisms&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Billard,%20R.&rft.date=2021-01&rft.volume=149&rft.issue=1&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0002973&rft_dat=%3Cproquest_pubme%3E2483813442%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483813442&rft_id=info:pmid/33514166&rfr_iscdi=true