A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem
In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the gen...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2021-01, Vol.23 (1), p.108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 23 |
creator | Misevičius, Alfonsas Verenė, Dovilė |
description | In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm. |
doi_str_mv | 10.3390/e23010108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmed_primary_33466928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09e7b665897140bc87fcec53963478f5</doaj_id><sourcerecordid>2479417723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</originalsourceid><addsrcrecordid>eNpVkV1LHDEUhkOxVGt74R-QudSLsfnafNwIy6KusNAWvQ-Z5GQ3MjPRZFbw35u6dlFykXDy8JxzeBE6IfiCMY1_AWWY1KO-oCOCtW45w_jgw_sQfS_lAWPKKBHf0CFjXAhN1RFazZvlS5ejb25ghCm6dhkh2-w20dm-mffrlOO0GZqQcjNtoPm7tT7bCjbzUuJ6HGCcmj85dT0MP9DXYPsCP9_vY3R3fXW_WLar3ze3i_mqdZyTqVW8ox1QyjVoNcNC-QCyky5YAiCCxgwIWE-tV5h4Dt4LLCR0zAMJkh2j253VJ_tgHnMcbH4xyUbzVkh5bWyuA_ZgsK5iIWZKS8Jx55QMDtyMacG4VGFWXZc71-O2G8C7uky2_Sfp558xbsw6PRupOBdUVcHZuyCnpy2UyQyxOOh7O0LaFkO51JxISVlFz3eoy6mUDGHfhmDzL0ezz7Gypx_n2pP_g2OvlduYkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479417723</pqid></control><display><type>article</type><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Misevičius, Alfonsas ; Verenė, Dovilė</creator><creatorcontrib>Misevičius, Alfonsas ; Verenė, Dovilė</creatorcontrib><description>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23010108</identifier><identifier>PMID: 33466928</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>combinatorial optimization ; genetic algorithms ; hierarchical heuristic algorithms ; hybrid heuristic algorithms ; quadratic assignment problem ; tabu search</subject><ispartof>Entropy (Basel, Switzerland), 2021-01, Vol.23 (1), p.108</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</citedby><cites>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33466928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Misevičius, Alfonsas</creatorcontrib><creatorcontrib>Verenė, Dovilė</creatorcontrib><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</description><subject>combinatorial optimization</subject><subject>genetic algorithms</subject><subject>hierarchical heuristic algorithms</subject><subject>hybrid heuristic algorithms</subject><subject>quadratic assignment problem</subject><subject>tabu search</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkV1LHDEUhkOxVGt74R-QudSLsfnafNwIy6KusNAWvQ-Z5GQ3MjPRZFbw35u6dlFykXDy8JxzeBE6IfiCMY1_AWWY1KO-oCOCtW45w_jgw_sQfS_lAWPKKBHf0CFjXAhN1RFazZvlS5ejb25ghCm6dhkh2-w20dm-mffrlOO0GZqQcjNtoPm7tT7bCjbzUuJ6HGCcmj85dT0MP9DXYPsCP9_vY3R3fXW_WLar3ze3i_mqdZyTqVW8ox1QyjVoNcNC-QCyky5YAiCCxgwIWE-tV5h4Dt4LLCR0zAMJkh2j253VJ_tgHnMcbH4xyUbzVkh5bWyuA_ZgsK5iIWZKS8Jx55QMDtyMacG4VGFWXZc71-O2G8C7uky2_Sfp558xbsw6PRupOBdUVcHZuyCnpy2UyQyxOOh7O0LaFkO51JxISVlFz3eoy6mUDGHfhmDzL0ezz7Gypx_n2pP_g2OvlduYkg</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Misevičius, Alfonsas</creator><creator>Verenė, Dovilė</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210114</creationdate><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><author>Misevičius, Alfonsas ; Verenė, Dovilė</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>combinatorial optimization</topic><topic>genetic algorithms</topic><topic>hierarchical heuristic algorithms</topic><topic>hybrid heuristic algorithms</topic><topic>quadratic assignment problem</topic><topic>tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misevičius, Alfonsas</creatorcontrib><creatorcontrib>Verenė, Dovilė</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misevičius, Alfonsas</au><au>Verenė, Dovilė</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>108</spage><pages>108-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33466928</pmid><doi>10.3390/e23010108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2021-01, Vol.23 (1), p.108 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_pubmed_primary_33466928 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | combinatorial optimization genetic algorithms hierarchical heuristic algorithms hybrid heuristic algorithms quadratic assignment problem tabu search |
title | A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Genetic-Hierarchical%20Algorithm%20for%20the%20Quadratic%20Assignment%20Problem&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Misevi%C4%8Dius,%20Alfonsas&rft.date=2021-01-14&rft.volume=23&rft.issue=1&rft.spage=108&rft.pages=108-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23010108&rft_dat=%3Cproquest_doaj_%3E2479417723%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479417723&rft_id=info:pmid/33466928&rft_doaj_id=oai_doaj_org_article_09e7b665897140bc87fcec53963478f5&rfr_iscdi=true |