A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem

In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2021-01, Vol.23 (1), p.108
Hauptverfasser: Misevičius, Alfonsas, Verenė, Dovilė
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 108
container_title Entropy (Basel, Switzerland)
container_volume 23
creator Misevičius, Alfonsas
Verenė, Dovilė
description In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.
doi_str_mv 10.3390/e23010108
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmed_primary_33466928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09e7b665897140bc87fcec53963478f5</doaj_id><sourcerecordid>2479417723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</originalsourceid><addsrcrecordid>eNpVkV1LHDEUhkOxVGt74R-QudSLsfnafNwIy6KusNAWvQ-Z5GQ3MjPRZFbw35u6dlFykXDy8JxzeBE6IfiCMY1_AWWY1KO-oCOCtW45w_jgw_sQfS_lAWPKKBHf0CFjXAhN1RFazZvlS5ejb25ghCm6dhkh2-w20dm-mffrlOO0GZqQcjNtoPm7tT7bCjbzUuJ6HGCcmj85dT0MP9DXYPsCP9_vY3R3fXW_WLar3ze3i_mqdZyTqVW8ox1QyjVoNcNC-QCyky5YAiCCxgwIWE-tV5h4Dt4LLCR0zAMJkh2j253VJ_tgHnMcbH4xyUbzVkh5bWyuA_ZgsK5iIWZKS8Jx55QMDtyMacG4VGFWXZc71-O2G8C7uky2_Sfp558xbsw6PRupOBdUVcHZuyCnpy2UyQyxOOh7O0LaFkO51JxISVlFz3eoy6mUDGHfhmDzL0ezz7Gypx_n2pP_g2OvlduYkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479417723</pqid></control><display><type>article</type><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Misevičius, Alfonsas ; Verenė, Dovilė</creator><creatorcontrib>Misevičius, Alfonsas ; Verenė, Dovilė</creatorcontrib><description>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23010108</identifier><identifier>PMID: 33466928</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>combinatorial optimization ; genetic algorithms ; hierarchical heuristic algorithms ; hybrid heuristic algorithms ; quadratic assignment problem ; tabu search</subject><ispartof>Entropy (Basel, Switzerland), 2021-01, Vol.23 (1), p.108</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</citedby><cites>FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33466928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Misevičius, Alfonsas</creatorcontrib><creatorcontrib>Verenė, Dovilė</creatorcontrib><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</description><subject>combinatorial optimization</subject><subject>genetic algorithms</subject><subject>hierarchical heuristic algorithms</subject><subject>hybrid heuristic algorithms</subject><subject>quadratic assignment problem</subject><subject>tabu search</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkV1LHDEUhkOxVGt74R-QudSLsfnafNwIy6KusNAWvQ-Z5GQ3MjPRZFbw35u6dlFykXDy8JxzeBE6IfiCMY1_AWWY1KO-oCOCtW45w_jgw_sQfS_lAWPKKBHf0CFjXAhN1RFazZvlS5ejb25ghCm6dhkh2-w20dm-mffrlOO0GZqQcjNtoPm7tT7bCjbzUuJ6HGCcmj85dT0MP9DXYPsCP9_vY3R3fXW_WLar3ze3i_mqdZyTqVW8ox1QyjVoNcNC-QCyky5YAiCCxgwIWE-tV5h4Dt4LLCR0zAMJkh2j253VJ_tgHnMcbH4xyUbzVkh5bWyuA_ZgsK5iIWZKS8Jx55QMDtyMacG4VGFWXZc71-O2G8C7uky2_Sfp558xbsw6PRupOBdUVcHZuyCnpy2UyQyxOOh7O0LaFkO51JxISVlFz3eoy6mUDGHfhmDzL0ezz7Gypx_n2pP_g2OvlduYkg</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Misevičius, Alfonsas</creator><creator>Verenė, Dovilė</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210114</creationdate><title>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</title><author>Misevičius, Alfonsas ; Verenė, Dovilė</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-84b2be2249e985068dfe7b7cfa1ee6f903e1ead2ad801d4edd6067eb3de1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>combinatorial optimization</topic><topic>genetic algorithms</topic><topic>hierarchical heuristic algorithms</topic><topic>hybrid heuristic algorithms</topic><topic>quadratic assignment problem</topic><topic>tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misevičius, Alfonsas</creatorcontrib><creatorcontrib>Verenė, Dovilė</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misevičius, Alfonsas</au><au>Verenė, Dovilė</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>108</spage><pages>108-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular, the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring solutions produced by the crossover operator of the genetic algorithm. The results of the conducted computational experiments demonstrate the promising performance and competitiveness of the proposed algorithm.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33466928</pmid><doi>10.3390/e23010108</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2021-01, Vol.23 (1), p.108
issn 1099-4300
1099-4300
language eng
recordid cdi_pubmed_primary_33466928
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects combinatorial optimization
genetic algorithms
hierarchical heuristic algorithms
hybrid heuristic algorithms
quadratic assignment problem
tabu search
title A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Genetic-Hierarchical%20Algorithm%20for%20the%20Quadratic%20Assignment%20Problem&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Misevi%C4%8Dius,%20Alfonsas&rft.date=2021-01-14&rft.volume=23&rft.issue=1&rft.spage=108&rft.pages=108-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23010108&rft_dat=%3Cproquest_doaj_%3E2479417723%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479417723&rft_id=info:pmid/33466928&rft_doaj_id=oai_doaj_org_article_09e7b665897140bc87fcec53963478f5&rfr_iscdi=true