The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-12, Vol.295 (51), p.17646
Hauptverfasser: Teng, Fang-Yuan, Wang, Ting-Ting, Guo, Hai-Lei, Xin, Ben-Ge, Sun, Bo, Dou, Shuo-Xing, Xi, Xu-Guang, Hou, Xi-Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 51
container_start_page 17646
container_title The Journal of biological chemistry
container_volume 295
creator Teng, Fang-Yuan
Wang, Ting-Ting
Guo, Hai-Lei
Xin, Ben-Ge
Sun, Bo
Dou, Shuo-Xing
Xi, Xu-Guang
Hou, Xi-Miao
description RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.
doi_str_mv 10.1074/jbc.RA120.015492
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33454004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33454004</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-11f428e967b6fb39ec26a4ff68b98a9060a2fb91cbbe5cf00eb54368ebb170f33</originalsourceid><addsrcrecordid>eNo1T19LwzAcDIK4OX33SX5foDVp0q55HNvchKFYJvg2kvQXl9E2dWnVfXuLf-7luOM47gi5YTRmdCruDtrExYwlNKYsFTI5I2NGcx7xlL2OyGUIBzpASHZBRpyLVAxiTMJ2j7AuFnMofa1cA75tfXAdVieofdlXqsMA3RDqm0_XlK55A2U69-G6E3gLyxiMrxwUaJ5hj5UzKiD4Bsq-rfALFo8zUE0Jq-i9V-Xxx7wi51ZVAa__eEJe7pfb-TraPK0e5rNN1A7Du4gxK5IcZTbVmdVcokkyJazNci1zJWlGVWK1ZEZrTI2lFHUqeJaj1mxKLecTcvvb2_a6xnLXHl2tjqfd_3v-DUIWW8Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Teng, Fang-Yuan ; Wang, Ting-Ting ; Guo, Hai-Lei ; Xin, Ben-Ge ; Sun, Bo ; Dou, Shuo-Xing ; Xi, Xu-Guang ; Hou, Xi-Miao</creator><creatorcontrib>Teng, Fang-Yuan ; Wang, Ting-Ting ; Guo, Hai-Lei ; Xin, Ben-Ge ; Sun, Bo ; Dou, Shuo-Xing ; Xi, Xu-Guang ; Hou, Xi-Miao</creatorcontrib><description>RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.</description><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.015492</identifier><identifier>PMID: 33454004</identifier><language>eng</language><publisher>United States</publisher><subject>DNA - metabolism ; DNA Repair ; Escherichia coli - enzymology ; Fluorescence Resonance Energy Transfer ; G-Quadruplexes ; Humans ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; Protein Binding ; Protein Domains ; Protein Structure, Tertiary ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; RecQ Helicases - chemistry ; RecQ Helicases - genetics ; RecQ Helicases - metabolism ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (51), p.17646</ispartof><rights>Copyright © 2020 © 2020 Teng et al. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33454004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teng, Fang-Yuan</creatorcontrib><creatorcontrib>Wang, Ting-Ting</creatorcontrib><creatorcontrib>Guo, Hai-Lei</creatorcontrib><creatorcontrib>Xin, Ben-Ge</creatorcontrib><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Dou, Shuo-Xing</creatorcontrib><creatorcontrib>Xi, Xu-Guang</creatorcontrib><creatorcontrib>Hou, Xi-Miao</creatorcontrib><title>The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.</description><subject>DNA - metabolism</subject><subject>DNA Repair</subject><subject>Escherichia coli - enzymology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>G-Quadruplexes</subject><subject>Humans</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>RecQ Helicases - chemistry</subject><subject>RecQ Helicases - genetics</subject><subject>RecQ Helicases - metabolism</subject><subject>Substrate Specificity</subject><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1T19LwzAcDIK4OX33SX5foDVp0q55HNvchKFYJvg2kvQXl9E2dWnVfXuLf-7luOM47gi5YTRmdCruDtrExYwlNKYsFTI5I2NGcx7xlL2OyGUIBzpASHZBRpyLVAxiTMJ2j7AuFnMofa1cA75tfXAdVieofdlXqsMA3RDqm0_XlK55A2U69-G6E3gLyxiMrxwUaJ5hj5UzKiD4Bsq-rfALFo8zUE0Jq-i9V-Xxx7wi51ZVAa__eEJe7pfb-TraPK0e5rNN1A7Du4gxK5IcZTbVmdVcokkyJazNci1zJWlGVWK1ZEZrTI2lFHUqeJaj1mxKLecTcvvb2_a6xnLXHl2tjqfd_3v-DUIWW8Q</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Teng, Fang-Yuan</creator><creator>Wang, Ting-Ting</creator><creator>Guo, Hai-Lei</creator><creator>Xin, Ben-Ge</creator><creator>Sun, Bo</creator><creator>Dou, Shuo-Xing</creator><creator>Xi, Xu-Guang</creator><creator>Hou, Xi-Miao</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20201218</creationdate><title>The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex</title><author>Teng, Fang-Yuan ; Wang, Ting-Ting ; Guo, Hai-Lei ; Xin, Ben-Ge ; Sun, Bo ; Dou, Shuo-Xing ; Xi, Xu-Guang ; Hou, Xi-Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-11f428e967b6fb39ec26a4ff68b98a9060a2fb91cbbe5cf00eb54368ebb170f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>DNA - metabolism</topic><topic>DNA Repair</topic><topic>Escherichia coli - enzymology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>G-Quadruplexes</topic><topic>Humans</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>RecQ Helicases - chemistry</topic><topic>RecQ Helicases - genetics</topic><topic>RecQ Helicases - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Fang-Yuan</creatorcontrib><creatorcontrib>Wang, Ting-Ting</creatorcontrib><creatorcontrib>Guo, Hai-Lei</creatorcontrib><creatorcontrib>Xin, Ben-Ge</creatorcontrib><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Dou, Shuo-Xing</creatorcontrib><creatorcontrib>Xi, Xu-Guang</creatorcontrib><creatorcontrib>Hou, Xi-Miao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Fang-Yuan</au><au>Wang, Ting-Ting</au><au>Guo, Hai-Lei</au><au>Xin, Ben-Ge</au><au>Sun, Bo</au><au>Dou, Shuo-Xing</au><au>Xi, Xu-Guang</au><au>Hou, Xi-Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-18</date><risdate>2020</risdate><volume>295</volume><issue>51</issue><spage>17646</spage><pages>17646-</pages><eissn>1083-351X</eissn><abstract>RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.</abstract><cop>United States</cop><pmid>33454004</pmid><doi>10.1074/jbc.RA120.015492</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1083-351X
ispartof The Journal of biological chemistry, 2020-12, Vol.295 (51), p.17646
issn 1083-351X
language eng
recordid cdi_pubmed_primary_33454004
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects DNA - metabolism
DNA Repair
Escherichia coli - enzymology
Fluorescence Resonance Energy Transfer
G-Quadruplexes
Humans
Mutagenesis, Site-Directed
Nucleic Acid Conformation
Protein Binding
Protein Domains
Protein Structure, Tertiary
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
RecQ Helicases - chemistry
RecQ Helicases - genetics
RecQ Helicases - metabolism
Substrate Specificity
title The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20HRDC%20domain%20oppositely%20modulates%20the%20unwinding%20activity%20of%20E.%20coli%20RecQ%20helicase%20on%20duplex%20DNA%20and%20G-quadruplex&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Teng,%20Fang-Yuan&rft.date=2020-12-18&rft.volume=295&rft.issue=51&rft.spage=17646&rft.pages=17646-&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.015492&rft_dat=%3Cpubmed%3E33454004%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33454004&rfr_iscdi=true