Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants
To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for a...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-01, Vol.11 (1), p.567-567, Article 567 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 1 |
container_start_page | 567 |
container_title | Scientific reports |
container_volume | 11 |
creator | Gontard, Lionel C. Pizarro, Joaquín Sanz-Peña, Borja Lubián López, Simón P. Benavente-Fernández, Isabel |
description | To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874–0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD. |
doi_str_mv | 10.1038/s41598-020-80783-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33436974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1705f93a66642ebb5e5239fafff4afd</doaj_id><sourcerecordid>2477090597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-868c50a246ce5bc204ca00af81eca891bebfe383e9de25ee99b0bc3f6e4ec8e23</originalsourceid><addsrcrecordid>eNqNkk-P1CAYxhujcTfrfgEPhsSLialSKC1cTDbjv0028aJn8pa-dDppYYR2zNz94LLTcZz1YOTCC_yeJ7zwZNnzgr4pKJdvY1kIJXPKaC5pLXnOH2WXjJYiZ5yxx2f1RXYd44amIZgqC_U0u-C85JWqy8vs5808-RGm3pCI3YhuSrV3xFuyS4vQm3mAQHZ-mEckzZ7w92QepgDRO98F2K73pHdk6-NE1oCjD2ENXXI7V7f9AEdfGL3ryDbghGFMSgtuis-yJxaGiNfH-Sr79vHD19Xn_O7Lp9vVzV1uREmnXFbSCAqsrAyKxqQGDVAKVhZoQKqiwcYilxxVi0wgKtXQxnBbYYlGIuNX2e3i23rY6G3oRwh77aHXhw0fOg0hPcWA2hY1FVZxqKqqZNg0AgXjyoK1tgTbJq93i9d2bkZszX27MDwwfXji-rXu_E7XkvJaFsng1dEg-O8zxkmPfTQ4DODQz1Gzsq4FozVVCX35F7rxc3DpqQ4UVVSoOlFsoUzwMQa0p8sUVN9nRi-Z0Skz-pAZzZPoxXkbJ8nvhCRALsAPbLyNpkdn8ISlUFWsUIUSqeJ01S_fvPKzm5L09f9LE80XOibCdRj-NPmP-_8CdBPylw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477090597</pqid></control><display><type>article</type><title>Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Gontard, Lionel C. ; Pizarro, Joaquín ; Sanz-Peña, Borja ; Lubián López, Simón P. ; Benavente-Fernández, Isabel</creator><creatorcontrib>Gontard, Lionel C. ; Pizarro, Joaquín ; Sanz-Peña, Borja ; Lubián López, Simón P. ; Benavente-Fernández, Isabel</creatorcontrib><description>To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874–0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-80783-3</identifier><identifier>PMID: 33436974</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689 ; 639/166 ; 692/617 ; Baby foods ; Birth weight ; Deep learning ; Gestational age ; Humanities and Social Sciences ; Infants ; multidisciplinary ; Multidisciplinary Sciences ; Neonates ; Neural networks ; Newborn babies ; Premature babies ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Segmentation ; Ultrasound ; Ventricle</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.567-567, Article 567</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621919500030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-868c50a246ce5bc204ca00af81eca891bebfe383e9de25ee99b0bc3f6e4ec8e23</citedby><cites>FETCH-LOGICAL-c540t-868c50a246ce5bc204ca00af81eca891bebfe383e9de25ee99b0bc3f6e4ec8e23</cites><orcidid>0000-0001-9276-1912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803781/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803781/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33436974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gontard, Lionel C.</creatorcontrib><creatorcontrib>Pizarro, Joaquín</creatorcontrib><creatorcontrib>Sanz-Peña, Borja</creatorcontrib><creatorcontrib>Lubián López, Simón P.</creatorcontrib><creatorcontrib>Benavente-Fernández, Isabel</creatorcontrib><title>Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874–0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD.</description><subject>631/378/1689</subject><subject>639/166</subject><subject>692/617</subject><subject>Baby foods</subject><subject>Birth weight</subject><subject>Deep learning</subject><subject>Gestational age</subject><subject>Humanities and Social Sciences</subject><subject>Infants</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Newborn babies</subject><subject>Premature babies</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Ultrasound</subject><subject>Ventricle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk-P1CAYxhujcTfrfgEPhsSLialSKC1cTDbjv0028aJn8pa-dDppYYR2zNz94LLTcZz1YOTCC_yeJ7zwZNnzgr4pKJdvY1kIJXPKaC5pLXnOH2WXjJYiZ5yxx2f1RXYd44amIZgqC_U0u-C85JWqy8vs5808-RGm3pCI3YhuSrV3xFuyS4vQm3mAQHZ-mEckzZ7w92QepgDRO98F2K73pHdk6-NE1oCjD2ENXXI7V7f9AEdfGL3ryDbghGFMSgtuis-yJxaGiNfH-Sr79vHD19Xn_O7Lp9vVzV1uREmnXFbSCAqsrAyKxqQGDVAKVhZoQKqiwcYilxxVi0wgKtXQxnBbYYlGIuNX2e3i23rY6G3oRwh77aHXhw0fOg0hPcWA2hY1FVZxqKqqZNg0AgXjyoK1tgTbJq93i9d2bkZszX27MDwwfXji-rXu_E7XkvJaFsng1dEg-O8zxkmPfTQ4DODQz1Gzsq4FozVVCX35F7rxc3DpqQ4UVVSoOlFsoUzwMQa0p8sUVN9nRi-Z0Skz-pAZzZPoxXkbJ8nvhCRALsAPbLyNpkdn8ISlUFWsUIUSqeJ01S_fvPKzm5L09f9LE80XOibCdRj-NPmP-_8CdBPylw</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Gontard, Lionel C.</creator><creator>Pizarro, Joaquín</creator><creator>Sanz-Peña, Borja</creator><creator>Lubián López, Simón P.</creator><creator>Benavente-Fernández, Isabel</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9276-1912</orcidid></search><sort><creationdate>20210112</creationdate><title>Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants</title><author>Gontard, Lionel C. ; Pizarro, Joaquín ; Sanz-Peña, Borja ; Lubián López, Simón P. ; Benavente-Fernández, Isabel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-868c50a246ce5bc204ca00af81eca891bebfe383e9de25ee99b0bc3f6e4ec8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/1689</topic><topic>639/166</topic><topic>692/617</topic><topic>Baby foods</topic><topic>Birth weight</topic><topic>Deep learning</topic><topic>Gestational age</topic><topic>Humanities and Social Sciences</topic><topic>Infants</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Newborn babies</topic><topic>Premature babies</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Ultrasound</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gontard, Lionel C.</creatorcontrib><creatorcontrib>Pizarro, Joaquín</creatorcontrib><creatorcontrib>Sanz-Peña, Borja</creatorcontrib><creatorcontrib>Lubián López, Simón P.</creatorcontrib><creatorcontrib>Benavente-Fernández, Isabel</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gontard, Lionel C.</au><au>Pizarro, Joaquín</au><au>Sanz-Peña, Borja</au><au>Lubián López, Simón P.</au><au>Benavente-Fernández, Isabel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>567</spage><epage>567</epage><pages>567-567</pages><artnum>567</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874–0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33436974</pmid><doi>10.1038/s41598-020-80783-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9276-1912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-01, Vol.11 (1), p.567-567, Article 567 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmed_primary_33436974 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/378/1689 639/166 692/617 Baby foods Birth weight Deep learning Gestational age Humanities and Social Sciences Infants multidisciplinary Multidisciplinary Sciences Neonates Neural networks Newborn babies Premature babies Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Segmentation Ultrasound Ventricle |
title | Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20ventricular%20volume%20by%203D%20ultrasonography%20in%20post%20haemorrhagic%20ventricular%20dilatation%20among%20preterm%20infants&rft.jtitle=Scientific%20reports&rft.au=Gontard,%20Lionel%20C.&rft.date=2021-01-12&rft.volume=11&rft.issue=1&rft.spage=567&rft.epage=567&rft.pages=567-567&rft.artnum=567&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-80783-3&rft_dat=%3Cproquest_pubme%3E2477090597%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477090597&rft_id=info:pmid/33436974&rft_doaj_id=oai_doaj_org_article_f1705f93a66642ebb5e5239fafff4afd&rfr_iscdi=true |