Revisiting Shadow Detection: A New Benchmark Dataset for Complex World

Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2021, Vol.30, p.1925-1934
Hauptverfasser: Hu, Xiaowei, Wang, Tianyu, Fu, Chi-Wing, Jiang, Yitong, Wang, Qiong, Heng, Pheng-Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1934
container_issue
container_start_page 1925
container_title IEEE transactions on image processing
container_volume 30
creator Hu, Xiaowei
Wang, Tianyu
Fu, Chi-Wing
Jiang, Yitong
Wang, Qiong
Heng, Pheng-Ann
description Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.
doi_str_mv 10.1109/TIP.2021.3049331
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33428570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9319520</ieee_id><sourcerecordid>2477263180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b6520502db43cad795a8ee6e60cb28e19f3deb5089d38ef8e7a80215de8f10393</originalsourceid><addsrcrecordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOXk3ibV2fICo-8FjSdqrVbrM2XR__vVl29eBpBuabYX4fITsMBoyBPXy4vB1w4GwgQFoh2BJZZ1ayBEDy5diD0olm0q6RjRBeAZhULF0la0JIbpSGdXJ2hx91qPu6fab3L670n_QEeyz62rdHdEiv8ZMeY1u8jF33Rk9c7wL2tPIdHfnxpMEv-uS7ptwiK5VrAm4v6iZ5PDt9GF0kVzfnl6PhVVIIqfskTxUHBbzMpShcqa1yBjHFFIqcG2S2EiXmCowthcHKoHYmxlMlmoqBsGKTHMzvTjr_PsXQZ-M6FNg0rkU_DRmXWvNUMAMR3f-Hvvpp18bvZpQ1xmipIgVzquh8CB1W2aSrY9bvjEE2c5xFx9nMcbZwHFf2Foen-RjLv4VfqRHYnQM1Iv6NrWA2phc_txV9yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479888745</pqid></control><display><type>article</type><title>Revisiting Shadow Detection: A New Benchmark Dataset for Complex World</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xiaowei ; Wang, Tianyu ; Fu, Chi-Wing ; Jiang, Yitong ; Wang, Qiong ; Heng, Pheng-Ann</creator><creatorcontrib>Hu, Xiaowei ; Wang, Tianyu ; Fu, Chi-Wing ; Jiang, Yitong ; Wang, Qiong ; Heng, Pheng-Ann</creatorcontrib><description>Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3049331</identifier><identifier>PMID: 33428570</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>benchmark dataset ; Benchmark testing ; Benchmarks ; Buildings ; complex ; Complexity ; Complexity theory ; Datasets ; deep neural network ; Feature extraction ; Roads ; Shadow detection ; Shadows ; Solid modeling ; Training</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.1925-1934</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b6520502db43cad795a8ee6e60cb28e19f3deb5089d38ef8e7a80215de8f10393</citedby><cites>FETCH-LOGICAL-c347t-b6520502db43cad795a8ee6e60cb28e19f3deb5089d38ef8e7a80215de8f10393</cites><orcidid>0000-0002-0835-3770 ; 0000-0002-5708-7018 ; 0000-0003-3055-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9319520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9319520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33428570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xiaowei</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Jiang, Yitong</creatorcontrib><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>Revisiting Shadow Detection: A New Benchmark Dataset for Complex World</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.</description><subject>benchmark dataset</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Buildings</subject><subject>complex</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Roads</subject><subject>Shadow detection</subject><subject>Shadows</subject><subject>Solid modeling</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOXk3ibV2fICo-8FjSdqrVbrM2XR__vVl29eBpBuabYX4fITsMBoyBPXy4vB1w4GwgQFoh2BJZZ1ayBEDy5diD0olm0q6RjRBeAZhULF0la0JIbpSGdXJ2hx91qPu6fab3L670n_QEeyz62rdHdEiv8ZMeY1u8jF33Rk9c7wL2tPIdHfnxpMEv-uS7ptwiK5VrAm4v6iZ5PDt9GF0kVzfnl6PhVVIIqfskTxUHBbzMpShcqa1yBjHFFIqcG2S2EiXmCowthcHKoHYmxlMlmoqBsGKTHMzvTjr_PsXQZ-M6FNg0rkU_DRmXWvNUMAMR3f-Hvvpp18bvZpQ1xmipIgVzquh8CB1W2aSrY9bvjEE2c5xFx9nMcbZwHFf2Foen-RjLv4VfqRHYnQM1Iv6NrWA2phc_txV9yg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hu, Xiaowei</creator><creator>Wang, Tianyu</creator><creator>Fu, Chi-Wing</creator><creator>Jiang, Yitong</creator><creator>Wang, Qiong</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0835-3770</orcidid><orcidid>https://orcid.org/0000-0002-5708-7018</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid></search><sort><creationdate>2021</creationdate><title>Revisiting Shadow Detection: A New Benchmark Dataset for Complex World</title><author>Hu, Xiaowei ; Wang, Tianyu ; Fu, Chi-Wing ; Jiang, Yitong ; Wang, Qiong ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b6520502db43cad795a8ee6e60cb28e19f3deb5089d38ef8e7a80215de8f10393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>benchmark dataset</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Buildings</topic><topic>complex</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Roads</topic><topic>Shadow detection</topic><topic>Shadows</topic><topic>Solid modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiaowei</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Jiang, Yitong</creatorcontrib><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiaowei</au><au>Wang, Tianyu</au><au>Fu, Chi-Wing</au><au>Jiang, Yitong</au><au>Wang, Qiong</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Shadow Detection: A New Benchmark Dataset for Complex World</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>1925</spage><epage>1934</epage><pages>1925-1934</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33428570</pmid><doi>10.1109/TIP.2021.3049331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0835-3770</orcidid><orcidid>https://orcid.org/0000-0002-5708-7018</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2021, Vol.30, p.1925-1934
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_33428570
source IEEE Electronic Library (IEL)
subjects benchmark dataset
Benchmark testing
Benchmarks
Buildings
complex
Complexity
Complexity theory
Datasets
deep neural network
Feature extraction
Roads
Shadow detection
Shadows
Solid modeling
Training
title Revisiting Shadow Detection: A New Benchmark Dataset for Complex World
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Shadow%20Detection:%20A%20New%20Benchmark%20Dataset%20for%20Complex%20World&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hu,%20Xiaowei&rft.date=2021&rft.volume=30&rft.spage=1925&rft.epage=1934&rft.pages=1925-1934&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3049331&rft_dat=%3Cproquest_RIE%3E2477263180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479888745&rft_id=info:pmid/33428570&rft_ieee_id=9319520&rfr_iscdi=true