Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway
Tendon stem cells (TSCs) are a kind of progenitor cells found in tendon niches, which play a key role in the repair of tendon injuries. Exosomes that mediate cell communication are involved in physiological processes and various diseases, while the effect of exosomes derived from TSCs (TSC-exo) on T...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2021-01, Vol.536, p.88-94 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tendon stem cells (TSCs) are a kind of progenitor cells found in tendon niches, which play a key role in the repair of tendon injuries. Exosomes that mediate cell communication are involved in physiological processes and various diseases, while the effect of exosomes derived from TSCs (TSC-exo) on TSCs is still unclear. The purpose of this study is to explore the effect of TSC-exo on TSCs. Analyzing the characteristics of TSC-exo, we found that the TSC-exo were enriched in a large amount of transforming growth factor β (TGF β) by western blotting. We also found that the TGF β carried by TSC-exo can effectively accelerate the proliferation and migration of TSCs. We further found that TGF β carried by TSC-exo can activate the TGF β-Smad2/3 and the ERK1/2 signaling pathway in TSCs. Furthermore, matrix metalloenzyme 2 (MMP2), a downstream molecule of Smad2, is regulated by TGF β carried by TSC-exo. Collectively, our findings provide molecular insights into TSC-exo and indicate that TSC-exo are a potential strategy for treating tendon injuries.
•Tendon stem cells derived exosomes promote proliferation and migration of tendon stem cells.•Tendon stem cells derived exosomes are enriched for TGF β.•TGF β carried by exosomes supports proliferation and migration through the TGF β signaling pathway. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2020.12.057 |