Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase

Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-01, Vol.17 (3), p.489-55
Hauptverfasser: Sanchez-Burgos, Ignacio, Garaizar, Adiran, Vega, Carlos, Sanz, Eduardo, Espinosa, Jorge R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 3
container_start_page 489
container_title Soft matter
container_volume 17
creator Sanchez-Burgos, Ignacio
Garaizar, Adiran
Vega, Carlos
Sanz, Eduardo
Espinosa, Jorge R
description Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it. Despite its lower stability and higher nucleation barrier, a metastable charge-disordered colloidal phase manages to parasitically crystallize from nuclei of the stable charge-ordered phase due to its enhanced kinetic crystal growth.
doi_str_mv 10.1039/d0sm01680b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33346291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481507823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-556161172f4e9a32f6eca253d0408399b0f39ef81326bc22a5af6434600ea7e3</originalsourceid><addsrcrecordid>eNpd0Utr3DAUBWARWppHu8k-QdBNKEwj6cqynV2bPmFCC80iO3OtuUocZGsiyZTpr6-n8wh0JYG-e5B0GDuV4r0UUF8uROqFNJVoD9iRLLWemUpXL_Z7uDtkxyk9CgGVluYVOwQAbVQtj1j-iRFTlzvLbVyljN53fzB3YeDBcRu8D90CPSdPNsfgV5nSFb-P4Xc33HPkPWWcplpPu3nuYuh5fiA-jNbTmNZByLdo-YCJXrOXDn2iN9v1hN1--Xx7_W02__H1-_WH-czqQuZZURhppCyV01QjKGfIoipgIbSooK5b4aAmV0lQprVKYYHO6OllQhCWBCfsYhO7jOFppJSbvkuWvMeBwpgapUtZACiQE337H30MYxymy02qkoUoKwWTerdRNoaUIrlmGbse46qRollX0XwSv27-VfFxwufbyLHtabGnu7-fwNkGxGT3p89dwl9epo5p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481507823</pqid></control><display><type>article</type><title>Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sanchez-Burgos, Ignacio ; Garaizar, Adiran ; Vega, Carlos ; Sanz, Eduardo ; Espinosa, Jorge R</creator><creatorcontrib>Sanchez-Burgos, Ignacio ; Garaizar, Adiran ; Vega, Carlos ; Sanz, Eduardo ; Espinosa, Jorge R</creatorcontrib><description>Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it. Despite its lower stability and higher nucleation barrier, a metastable charge-disordered colloidal phase manages to parasitically crystallize from nuclei of the stable charge-ordered phase due to its enhanced kinetic crystal growth.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01680b</identifier><identifier>PMID: 33346291</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding energy ; Colloids ; Computer applications ; Crossovers ; Crystal growth ; Crystallization ; Crystals ; Electrolytes ; Energy costs ; Free energy ; Molecular dynamics ; Nucleation ; Packing ; Surface tension</subject><ispartof>Soft matter, 2021-01, Vol.17 (3), p.489-55</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-556161172f4e9a32f6eca253d0408399b0f39ef81326bc22a5af6434600ea7e3</citedby><cites>FETCH-LOGICAL-c451t-556161172f4e9a32f6eca253d0408399b0f39ef81326bc22a5af6434600ea7e3</cites><orcidid>0000-0002-9320-2984 ; 0000-0001-6474-5835 ; 0000-0001-9530-2658 ; 0000-0002-1160-3945 ; 0000-0002-2417-9645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33346291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Burgos, Ignacio</creatorcontrib><creatorcontrib>Garaizar, Adiran</creatorcontrib><creatorcontrib>Vega, Carlos</creatorcontrib><creatorcontrib>Sanz, Eduardo</creatorcontrib><creatorcontrib>Espinosa, Jorge R</creatorcontrib><title>Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it. Despite its lower stability and higher nucleation barrier, a metastable charge-disordered colloidal phase manages to parasitically crystallize from nuclei of the stable charge-ordered phase due to its enhanced kinetic crystal growth.</description><subject>Binding energy</subject><subject>Colloids</subject><subject>Computer applications</subject><subject>Crossovers</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Electrolytes</subject><subject>Energy costs</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Packing</subject><subject>Surface tension</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0Utr3DAUBWARWppHu8k-QdBNKEwj6cqynV2bPmFCC80iO3OtuUocZGsiyZTpr6-n8wh0JYG-e5B0GDuV4r0UUF8uROqFNJVoD9iRLLWemUpXL_Z7uDtkxyk9CgGVluYVOwQAbVQtj1j-iRFTlzvLbVyljN53fzB3YeDBcRu8D90CPSdPNsfgV5nSFb-P4Xc33HPkPWWcplpPu3nuYuh5fiA-jNbTmNZByLdo-YCJXrOXDn2iN9v1hN1--Xx7_W02__H1-_WH-czqQuZZURhppCyV01QjKGfIoipgIbSooK5b4aAmV0lQprVKYYHO6OllQhCWBCfsYhO7jOFppJSbvkuWvMeBwpgapUtZACiQE337H30MYxymy02qkoUoKwWTerdRNoaUIrlmGbse46qRollX0XwSv27-VfFxwufbyLHtabGnu7-fwNkGxGT3p89dwl9epo5p</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Sanchez-Burgos, Ignacio</creator><creator>Garaizar, Adiran</creator><creator>Vega, Carlos</creator><creator>Sanz, Eduardo</creator><creator>Espinosa, Jorge R</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9320-2984</orcidid><orcidid>https://orcid.org/0000-0001-6474-5835</orcidid><orcidid>https://orcid.org/0000-0001-9530-2658</orcidid><orcidid>https://orcid.org/0000-0002-1160-3945</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid></search><sort><creationdate>20210121</creationdate><title>Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase</title><author>Sanchez-Burgos, Ignacio ; Garaizar, Adiran ; Vega, Carlos ; Sanz, Eduardo ; Espinosa, Jorge R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-556161172f4e9a32f6eca253d0408399b0f39ef81326bc22a5af6434600ea7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding energy</topic><topic>Colloids</topic><topic>Computer applications</topic><topic>Crossovers</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Electrolytes</topic><topic>Energy costs</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Packing</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Burgos, Ignacio</creatorcontrib><creatorcontrib>Garaizar, Adiran</creatorcontrib><creatorcontrib>Vega, Carlos</creatorcontrib><creatorcontrib>Sanz, Eduardo</creatorcontrib><creatorcontrib>Espinosa, Jorge R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Burgos, Ignacio</au><au>Garaizar, Adiran</au><au>Vega, Carlos</au><au>Sanz, Eduardo</au><au>Espinosa, Jorge R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>489</spage><epage>55</epage><pages>489-55</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it. Despite its lower stability and higher nucleation barrier, a metastable charge-disordered colloidal phase manages to parasitically crystallize from nuclei of the stable charge-ordered phase due to its enhanced kinetic crystal growth.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33346291</pmid><doi>10.1039/d0sm01680b</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9320-2984</orcidid><orcidid>https://orcid.org/0000-0001-6474-5835</orcidid><orcidid>https://orcid.org/0000-0001-9530-2658</orcidid><orcidid>https://orcid.org/0000-0002-1160-3945</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-01, Vol.17 (3), p.489-55
issn 1744-683X
1744-6848
language eng
recordid cdi_pubmed_primary_33346291
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Binding energy
Colloids
Computer applications
Crossovers
Crystal growth
Crystallization
Crystals
Electrolytes
Energy costs
Free energy
Molecular dynamics
Nucleation
Packing
Surface tension
title Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parasitic%20crystallization%20of%20colloidal%20electrolytes:%20growing%20a%20metastable%20crystal%20from%20the%20nucleus%20of%20a%20stable%20phase&rft.jtitle=Soft%20matter&rft.au=Sanchez-Burgos,%20Ignacio&rft.date=2021-01-21&rft.volume=17&rft.issue=3&rft.spage=489&rft.epage=55&rft.pages=489-55&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01680b&rft_dat=%3Cproquest_pubme%3E2481507823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481507823&rft_id=info:pmid/33346291&rfr_iscdi=true