Full noncontact laser ultrasound: first human data

Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utiliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2019-12, Vol.8 (1), p.119
Hauptverfasser: Zhang, Xiang, Fincke, Jonathan R, Wynn, Charles M, Johnson, Matt R, Haupt, Robert W, Anthony, Brian W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 119
container_title Light, science & applications
container_volume 8
creator Zhang, Xiang
Fincke, Jonathan R
Wynn, Charles M
Johnson, Matt R
Haupt, Robert W
Anthony, Brian W
description Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utilizing tissue-penetrating photoacoustics (PA) generally uses traditional piezoelectric transducers in contact with the imaged tissue or carries an optical fiber detector close to the imaging site. Unlike PA, the LUS design presented here minimizes the optical penetration and specifically restricts optical-to-acoustic energy transduction at the tissue surface, maximizing the generated acoustic source amplitude. With an appropriate optical design and interferometry, any exposed tissue surfaces can become viable acoustic sources and detectors. LUS operates analogously to conventional ultrasound but uses light instead of piezoelectric elements. Here, we present full noncontact LUS results, imaging targets at ~5 cm depths and at a meter-scale standoff from the target surface. Experimental results demonstrating volumetric imaging and the first LUS images on humans are presented, all at eye- and skin-safe optical exposure levels. The progression of LUS imaging from tissue-mimicking phantoms, to excised animal tissue, to humans in vivo is shown, with validation from conventional ultrasound images. The LUS system design insights and results presented here inspire further LUS development and are a significant step toward the clinical implementation of LUS.
doi_str_mv 10.1038/s41377-019-0229-8
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33339815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33339815</sourcerecordid><originalsourceid>FETCH-pubmed_primary_333398153</originalsourceid><addsrcrecordid>eNqFjTsKwkAUAB-CmKA5gI3sBVb3k7AbWzF4APvwzAcjm03YT-HtTaG100wzMAB7zo6cSX3yOZdKUcZLyoQoqV5BKliuqCqkTiDz_sUWypwzrTaQyIVS8yIFUUVjiJ1sM9mATSAGfedINMGhn6Jtz6QfnA_kGUe0pMWAO1j3aHyXfb2FQ3W9X250jo-xa-vZDSO6d_2byL_BB-kIN1g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Full noncontact laser ultrasound: first human data</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Zhang, Xiang ; Fincke, Jonathan R ; Wynn, Charles M ; Johnson, Matt R ; Haupt, Robert W ; Anthony, Brian W</creator><creatorcontrib>Zhang, Xiang ; Fincke, Jonathan R ; Wynn, Charles M ; Johnson, Matt R ; Haupt, Robert W ; Anthony, Brian W</creatorcontrib><description>Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utilizing tissue-penetrating photoacoustics (PA) generally uses traditional piezoelectric transducers in contact with the imaged tissue or carries an optical fiber detector close to the imaging site. Unlike PA, the LUS design presented here minimizes the optical penetration and specifically restricts optical-to-acoustic energy transduction at the tissue surface, maximizing the generated acoustic source amplitude. With an appropriate optical design and interferometry, any exposed tissue surfaces can become viable acoustic sources and detectors. LUS operates analogously to conventional ultrasound but uses light instead of piezoelectric elements. Here, we present full noncontact LUS results, imaging targets at ~5 cm depths and at a meter-scale standoff from the target surface. Experimental results demonstrating volumetric imaging and the first LUS images on humans are presented, all at eye- and skin-safe optical exposure levels. The progression of LUS imaging from tissue-mimicking phantoms, to excised animal tissue, to humans in vivo is shown, with validation from conventional ultrasound images. The LUS system design insights and results presented here inspire further LUS development and are a significant step toward the clinical implementation of LUS.</description><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-019-0229-8</identifier><identifier>PMID: 33339815</identifier><language>eng</language><publisher>England</publisher><ispartof>Light, science &amp; applications, 2019-12, Vol.8 (1), p.119</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3130-8337 ; 0000-0001-6346-5276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33339815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Fincke, Jonathan R</creatorcontrib><creatorcontrib>Wynn, Charles M</creatorcontrib><creatorcontrib>Johnson, Matt R</creatorcontrib><creatorcontrib>Haupt, Robert W</creatorcontrib><creatorcontrib>Anthony, Brian W</creatorcontrib><title>Full noncontact laser ultrasound: first human data</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><description>Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utilizing tissue-penetrating photoacoustics (PA) generally uses traditional piezoelectric transducers in contact with the imaged tissue or carries an optical fiber detector close to the imaging site. Unlike PA, the LUS design presented here minimizes the optical penetration and specifically restricts optical-to-acoustic energy transduction at the tissue surface, maximizing the generated acoustic source amplitude. With an appropriate optical design and interferometry, any exposed tissue surfaces can become viable acoustic sources and detectors. LUS operates analogously to conventional ultrasound but uses light instead of piezoelectric elements. Here, we present full noncontact LUS results, imaging targets at ~5 cm depths and at a meter-scale standoff from the target surface. Experimental results demonstrating volumetric imaging and the first LUS images on humans are presented, all at eye- and skin-safe optical exposure levels. The progression of LUS imaging from tissue-mimicking phantoms, to excised animal tissue, to humans in vivo is shown, with validation from conventional ultrasound images. The LUS system design insights and results presented here inspire further LUS development and are a significant step toward the clinical implementation of LUS.</description><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFjTsKwkAUAB-CmKA5gI3sBVb3k7AbWzF4APvwzAcjm03YT-HtTaG100wzMAB7zo6cSX3yOZdKUcZLyoQoqV5BKliuqCqkTiDz_sUWypwzrTaQyIVS8yIFUUVjiJ1sM9mATSAGfedINMGhn6Jtz6QfnA_kGUe0pMWAO1j3aHyXfb2FQ3W9X250jo-xa-vZDSO6d_2byL_BB-kIN1g</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Zhang, Xiang</creator><creator>Fincke, Jonathan R</creator><creator>Wynn, Charles M</creator><creator>Johnson, Matt R</creator><creator>Haupt, Robert W</creator><creator>Anthony, Brian W</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-3130-8337</orcidid><orcidid>https://orcid.org/0000-0001-6346-5276</orcidid></search><sort><creationdate>20191220</creationdate><title>Full noncontact laser ultrasound: first human data</title><author>Zhang, Xiang ; Fincke, Jonathan R ; Wynn, Charles M ; Johnson, Matt R ; Haupt, Robert W ; Anthony, Brian W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_333398153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Fincke, Jonathan R</creatorcontrib><creatorcontrib>Wynn, Charles M</creatorcontrib><creatorcontrib>Johnson, Matt R</creatorcontrib><creatorcontrib>Haupt, Robert W</creatorcontrib><creatorcontrib>Anthony, Brian W</creatorcontrib><collection>PubMed</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiang</au><au>Fincke, Jonathan R</au><au>Wynn, Charles M</au><au>Johnson, Matt R</au><au>Haupt, Robert W</au><au>Anthony, Brian W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full noncontact laser ultrasound: first human data</atitle><jtitle>Light, science &amp; applications</jtitle><addtitle>Light Sci Appl</addtitle><date>2019-12-20</date><risdate>2019</risdate><volume>8</volume><issue>1</issue><spage>119</spage><pages>119-</pages><eissn>2047-7538</eissn><abstract>Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utilizing tissue-penetrating photoacoustics (PA) generally uses traditional piezoelectric transducers in contact with the imaged tissue or carries an optical fiber detector close to the imaging site. Unlike PA, the LUS design presented here minimizes the optical penetration and specifically restricts optical-to-acoustic energy transduction at the tissue surface, maximizing the generated acoustic source amplitude. With an appropriate optical design and interferometry, any exposed tissue surfaces can become viable acoustic sources and detectors. LUS operates analogously to conventional ultrasound but uses light instead of piezoelectric elements. Here, we present full noncontact LUS results, imaging targets at ~5 cm depths and at a meter-scale standoff from the target surface. Experimental results demonstrating volumetric imaging and the first LUS images on humans are presented, all at eye- and skin-safe optical exposure levels. The progression of LUS imaging from tissue-mimicking phantoms, to excised animal tissue, to humans in vivo is shown, with validation from conventional ultrasound images. The LUS system design insights and results presented here inspire further LUS development and are a significant step toward the clinical implementation of LUS.</abstract><cop>England</cop><pmid>33339815</pmid><doi>10.1038/s41377-019-0229-8</doi><orcidid>https://orcid.org/0000-0002-3130-8337</orcidid><orcidid>https://orcid.org/0000-0001-6346-5276</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2047-7538
ispartof Light, science & applications, 2019-12, Vol.8 (1), p.119
issn 2047-7538
language eng
recordid cdi_pubmed_primary_33339815
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
title Full noncontact laser ultrasound: first human data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T14%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20noncontact%20laser%20ultrasound:%20first%20human%20data&rft.jtitle=Light,%20science%20&%20applications&rft.au=Zhang,%20Xiang&rft.date=2019-12-20&rft.volume=8&rft.issue=1&rft.spage=119&rft.pages=119-&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-019-0229-8&rft_dat=%3Cpubmed%3E33339815%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33339815&rfr_iscdi=true