Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery
The intestinal epithelial and mucus barriers on the gastrointestinal tract limit the bioavailability of oral protein or peptide drugs. Therefore, efficient mucus permeability and cellular internalization are required properties for oral delivery systems. To overcome these two obstacles, porous silic...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2021-02, Vol.9 (3), p.685-699 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intestinal epithelial and mucus barriers on the gastrointestinal tract limit the bioavailability of oral protein or peptide drugs. Therefore, efficient mucus permeability and cellular internalization are required properties for oral delivery systems. To overcome these two obstacles, porous silicon nanoparticles were modified with poly (pyridyl disulfide ethylene phosphate/sulfobetaine) polymers to make P(PyEP-
g
-SB
m
)
n
-AmPSiNPs (
m
= 0.1, 0.2, 0.3 and
n
= 10, 20, 30) nanoparticles (NPs). The insulin-loaded P(PyEP-
g
-SB)-AmPSiNPs showed favorable stability and good biocompatibility
in vitro
. The zwitterionic dodecyl sulfobetaine (SB) coated nanoparticles improved the mucus permeability. P(PyEP-
g
-SB
m
)
20
with the optimal conjugated ratio (
m
= 0.3) of SB units was determined by evaluating the mucus diffusion rate of NPs. The cellular uptake of P(PyEP-
g
-SB
0.3
)
n
-AmPSiNPs (
n
= 10, 20, 30) was much higher than AmPSiNPs in the presence of inhibitors (
N
-acetylcysteine solution and sodium chlorate) (
p
< 0.01) due to the enhanced charge shielding effect of P(PyEP-
g
-SB) modification. The P(PyEP-
g
-SB
0.3
)
20
-AmPSiNPs showed about 1.4-1.7 fold increase in the apparent permeability of insulin across Caco-2/HT-29-MTX cell monolayers, compared to AmPSiNPs (
p
< 0.01). Finally, the
in vivo
study showed that insulin-loaded P(PyEP-
g
-SB
0.3
)
20
-AmPSiNPs generated 20% reduction of the blood glucose level with an 2-fold increase in oral bioavailability. These suggested that zwitterionic polyphosphoester modified porous silicon nanoparticles, which were of enhanced mucus permeability and cellular internalization, represent a promising carrier for oral delivery of peptide and protein.
Schematic representation of P(PyEP-
g
-SB)-AmPSiNPs across the mucus barrier and epithelial cell barrier. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/d0bm01772h |