Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression

Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating fingerprint vectors from fingerprint distances. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (21), p.214104-214104
Hauptverfasser: Parsaeifard, Behnam, Tomerini, Daniele, De, Deb Sankar, Goedecker, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214104
container_issue 21
container_start_page 214104
container_title The Journal of chemical physics
container_volume 153
creator Parsaeifard, Behnam
Tomerini, Daniele
De, Deb Sankar
Goedecker, Stefan
description Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating fingerprint vectors from fingerprint distances. The fingerprint vectors found in this way point to the corners of a simplex. For a large dataset of fingerprints, we can find a particular largest simplex, whose dimension gives the effective dimension of the fingerprint vector space. We show that the corners of this simplex correspond to landmark environments that can be used in a fully automatic way to analyze structures. In this way, we can, for instance, detect atoms in grain boundaries or on edges of carbon flakes without any human input about the expected environment. By projecting fingerprints on the largest simplex, we can also obtain fingerprint vectors that are considerably shorter than the original ones but whose information content is not significantly reduced.
doi_str_mv 10.1063/5.0030061
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33291895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465873262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ef08438d1700acbd190b018addfce3c916d4fa53b8541a57609b5651bd9490583</originalsourceid><addsrcrecordid>eNp90c9qFTEUBvAgFnutLnwBCbixwtSTySSTLEuxKrS40fWQyR9MmUzGJHOpL-Bzm957rdKCq8Dhx3cO-RB6ReCMAKfv2RkABeDkCdoQELLpuYSnaAPQkkZy4Mfoec43AED6tnuGjiltJRGSbdCva3XrwxrwNk5rsDj7sEz2FgdbvkeDXUxYrSUGVbzG2U5WFx9nrGaD9aRy9s5rtRtFh1WFldl561Ocg51L3sl_BtjYrJNfSg3WMSzJ1ow4v0BHTk3Zvjy8J-jb5YevF5-aqy8fP1-cXzW6I6I01oHoqDCkB1B6NETCCEQoY5y2VEvCTecUo6NgHVGs5yBHxhkZjewkMEFP0Nt97pLij9XmMgSftZ0mNdu45qHtuOB9xwmp9M0DehPXNNfr7hQTPW15W9XpXukUc07WDUvyQaWfA4HhrpyBDYdyqn19SFzHYM29_NNGBe_2IGtfdr96b7Yx_U0aFuP-hx-v_g1EeKgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465873262</pqid></control><display><type>article</type><title>Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Parsaeifard, Behnam ; Tomerini, Daniele ; De, Deb Sankar ; Goedecker, Stefan</creator><creatorcontrib>Parsaeifard, Behnam ; Tomerini, Daniele ; De, Deb Sankar ; Goedecker, Stefan</creatorcontrib><description>Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating fingerprint vectors from fingerprint distances. The fingerprint vectors found in this way point to the corners of a simplex. For a large dataset of fingerprints, we can find a particular largest simplex, whose dimension gives the effective dimension of the fingerprint vector space. We show that the corners of this simplex correspond to landmark environments that can be used in a fully automatic way to analyze structures. In this way, we can, for instance, detect atoms in grain boundaries or on edges of carbon flakes without any human input about the expected environment. By projecting fingerprints on the largest simplex, we can also obtain fingerprint vectors that are considerably shorter than the original ones but whose information content is not significantly reduced.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0030061</identifier><identifier>PMID: 33291895</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Compression tests ; Corners ; Fingerprints ; Grain boundaries ; Mathematical analysis ; Physics ; Simplex method</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (21), p.214104-214104</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ef08438d1700acbd190b018addfce3c916d4fa53b8541a57609b5651bd9490583</citedby><cites>FETCH-LOGICAL-c418t-ef08438d1700acbd190b018addfce3c916d4fa53b8541a57609b5651bd9490583</cites><orcidid>0000-0001-8095-4493 ; 0000-0002-3580-4186 ; 0000000180954493 ; 0000000235804186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0030061$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parsaeifard, Behnam</creatorcontrib><creatorcontrib>Tomerini, Daniele</creatorcontrib><creatorcontrib>De, Deb Sankar</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><title>Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating fingerprint vectors from fingerprint distances. The fingerprint vectors found in this way point to the corners of a simplex. For a large dataset of fingerprints, we can find a particular largest simplex, whose dimension gives the effective dimension of the fingerprint vector space. We show that the corners of this simplex correspond to landmark environments that can be used in a fully automatic way to analyze structures. In this way, we can, for instance, detect atoms in grain boundaries or on edges of carbon flakes without any human input about the expected environment. By projecting fingerprints on the largest simplex, we can also obtain fingerprint vectors that are considerably shorter than the original ones but whose information content is not significantly reduced.</description><subject>Compression tests</subject><subject>Corners</subject><subject>Fingerprints</subject><subject>Grain boundaries</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Simplex method</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9qFTEUBvAgFnutLnwBCbixwtSTySSTLEuxKrS40fWQyR9MmUzGJHOpL-Bzm957rdKCq8Dhx3cO-RB6ReCMAKfv2RkABeDkCdoQELLpuYSnaAPQkkZy4Mfoec43AED6tnuGjiltJRGSbdCva3XrwxrwNk5rsDj7sEz2FgdbvkeDXUxYrSUGVbzG2U5WFx9nrGaD9aRy9s5rtRtFh1WFldl561Ocg51L3sl_BtjYrJNfSg3WMSzJ1ow4v0BHTk3Zvjy8J-jb5YevF5-aqy8fP1-cXzW6I6I01oHoqDCkB1B6NETCCEQoY5y2VEvCTecUo6NgHVGs5yBHxhkZjewkMEFP0Nt97pLij9XmMgSftZ0mNdu45qHtuOB9xwmp9M0DehPXNNfr7hQTPW15W9XpXukUc07WDUvyQaWfA4HhrpyBDYdyqn19SFzHYM29_NNGBe_2IGtfdr96b7Yx_U0aFuP-hx-v_g1EeKgE</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Parsaeifard, Behnam</creator><creator>Tomerini, Daniele</creator><creator>De, Deb Sankar</creator><creator>Goedecker, Stefan</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8095-4493</orcidid><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000000180954493</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid></search><sort><creationdate>20201207</creationdate><title>Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression</title><author>Parsaeifard, Behnam ; Tomerini, Daniele ; De, Deb Sankar ; Goedecker, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ef08438d1700acbd190b018addfce3c916d4fa53b8541a57609b5651bd9490583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compression tests</topic><topic>Corners</topic><topic>Fingerprints</topic><topic>Grain boundaries</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Simplex method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsaeifard, Behnam</creatorcontrib><creatorcontrib>Tomerini, Daniele</creatorcontrib><creatorcontrib>De, Deb Sankar</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsaeifard, Behnam</au><au>Tomerini, Daniele</au><au>De, Deb Sankar</au><au>Goedecker, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>153</volume><issue>21</issue><spage>214104</spage><epage>214104</epage><pages>214104-214104</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating fingerprint vectors from fingerprint distances. The fingerprint vectors found in this way point to the corners of a simplex. For a large dataset of fingerprints, we can find a particular largest simplex, whose dimension gives the effective dimension of the fingerprint vector space. We show that the corners of this simplex correspond to landmark environments that can be used in a fully automatic way to analyze structures. In this way, we can, for instance, detect atoms in grain boundaries or on edges of carbon flakes without any human input about the expected environment. By projecting fingerprints on the largest simplex, we can also obtain fingerprint vectors that are considerably shorter than the original ones but whose information content is not significantly reduced.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33291895</pmid><doi>10.1063/5.0030061</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8095-4493</orcidid><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000000180954493</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-12, Vol.153 (21), p.214104-214104
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_33291895
source AIP Journals Complete; Alma/SFX Local Collection
subjects Compression tests
Corners
Fingerprints
Grain boundaries
Mathematical analysis
Physics
Simplex method
title Maximum volume simplex method for automatic selection and classification of atomic environments and environment descriptor compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20volume%20simplex%20method%20for%20automatic%20selection%20and%20classification%20of%20atomic%20environments%20and%20environment%20descriptor%20compression&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Parsaeifard,%20Behnam&rft.date=2020-12-07&rft.volume=153&rft.issue=21&rft.spage=214104&rft.epage=214104&rft.pages=214104-214104&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0030061&rft_dat=%3Cproquest_pubme%3E2465873262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465873262&rft_id=info:pmid/33291895&rfr_iscdi=true