Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy
Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperther...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2021-01, Vol.167, p.405-414 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | |
container_start_page | 405 |
container_title | International journal of biological macromolecules |
container_volume | 167 |
creator | Liu, Zhemin Liang, Qingping Wang, Peng Kong, Qing Fu, Xiaodan Mou, Haijin |
description | Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications. |
doi_str_mv | 10.1016/j.ijbiomac.2020.11.202 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_pubmed_primary_33278432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813020351400</els_id><sourcerecordid>33278432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</originalsourceid><addsrcrecordid>eNqNkMtOwzAURC0EgvL4BeQ9SrHjNLF3oIpHpUpsYG35cQMuSVw5blF-iw_hm3AosIXVSHNnRroHoXNKppTQ8nI1dSvtfKvMNCd5Mumoe2hCeSUyQgjbRxNCC5pxysgROu77VXLLGeWH6IixvOIFyycIFu06-K3rnnF8AfzqOojO4D4q7RoXB-xrrPDLsIaQ7qH146UB_PGetarrVKd6wHpImaCi851qmgEb3-o0ZNNMcuF5OEUHtWp6OPvWE_R0e_M4v8-WD3eL-fUyM6zkMROWQ25VMVOWi6qmhAieF8JYXRcVqSptCdNG5JUubMlmTBBthQXBa00LMyPsBJW7XRN83weo5Tq4VoVBUiJHbnIlf7jJkZukdNRUPN8V1xvdgv2t_YBKgYtd4A20r3vjoDPwGxvJkrLkLB_J85Tm_0_PXfxCN_ebLqbq1a4KidPWQZDfdesCmCitd3898wk28aWN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</creator><creatorcontrib>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</creatorcontrib><description>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2020.11.202</identifier><identifier>PMID: 33278432</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Amino Acid Substitution ; beta-Mannosidase - chemistry ; beta-Mannosidase - genetics ; Biochemistry & Molecular Biology ; Catalysis ; Chemistry ; Chemistry, Applied ; Enzyme Activation ; Enzyme Stability ; High sensitivity ; Hydrogen-Ion Concentration ; Kinetic stability ; Kinetics ; Life Sciences & Biomedicine ; Models, Molecular ; Mutation ; Physical Sciences ; Polymer Science ; Protein Conformation ; Protein Engineering - methods ; Rationally combined strategy ; Science & Technology ; Temperature ; Thermodynamics</subject><ispartof>International journal of biological macromolecules, 2021-01, Vol.167, p.405-414</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606683200038</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</citedby><cites>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2020.11.202$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33278432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhemin</creatorcontrib><creatorcontrib>Liang, Qingping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Kong, Qing</creatorcontrib><creatorcontrib>Fu, Xiaodan</creatorcontrib><creatorcontrib>Mou, Haijin</creatorcontrib><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><title>International journal of biological macromolecules</title><addtitle>INT J BIOL MACROMOL</addtitle><addtitle>Int J Biol Macromol</addtitle><description>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</description><subject>Amino Acid Substitution</subject><subject>beta-Mannosidase - chemistry</subject><subject>beta-Mannosidase - genetics</subject><subject>Biochemistry & Molecular Biology</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry, Applied</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>High sensitivity</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetic stability</subject><subject>Kinetics</subject><subject>Life Sciences & Biomedicine</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Rationally combined strategy</subject><subject>Science & Technology</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAURC0EgvL4BeQ9SrHjNLF3oIpHpUpsYG35cQMuSVw5blF-iw_hm3AosIXVSHNnRroHoXNKppTQ8nI1dSvtfKvMNCd5Mumoe2hCeSUyQgjbRxNCC5pxysgROu77VXLLGeWH6IixvOIFyycIFu06-K3rnnF8AfzqOojO4D4q7RoXB-xrrPDLsIaQ7qH146UB_PGetarrVKd6wHpImaCi851qmgEb3-o0ZNNMcuF5OEUHtWp6OPvWE_R0e_M4v8-WD3eL-fUyM6zkMROWQ25VMVOWi6qmhAieF8JYXRcVqSptCdNG5JUubMlmTBBthQXBa00LMyPsBJW7XRN83weo5Tq4VoVBUiJHbnIlf7jJkZukdNRUPN8V1xvdgv2t_YBKgYtd4A20r3vjoDPwGxvJkrLkLB_J85Tm_0_PXfxCN_ebLqbq1a4KidPWQZDfdesCmCitd3898wk28aWN</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Liu, Zhemin</creator><creator>Liang, Qingping</creator><creator>Wang, Peng</creator><creator>Kong, Qing</creator><creator>Fu, Xiaodan</creator><creator>Mou, Haijin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><author>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Substitution</topic><topic>beta-Mannosidase - chemistry</topic><topic>beta-Mannosidase - genetics</topic><topic>Biochemistry & Molecular Biology</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry, Applied</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>High sensitivity</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetic stability</topic><topic>Kinetics</topic><topic>Life Sciences & Biomedicine</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Rationally combined strategy</topic><topic>Science & Technology</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhemin</creatorcontrib><creatorcontrib>Liang, Qingping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Kong, Qing</creatorcontrib><creatorcontrib>Fu, Xiaodan</creatorcontrib><creatorcontrib>Mou, Haijin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhemin</au><au>Liang, Qingping</au><au>Wang, Peng</au><au>Kong, Qing</au><au>Fu, Xiaodan</au><au>Mou, Haijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</atitle><jtitle>International journal of biological macromolecules</jtitle><stitle>INT J BIOL MACROMOL</stitle><addtitle>Int J Biol Macromol</addtitle><date>2021-01-15</date><risdate>2021</risdate><volume>167</volume><spage>405</spage><epage>414</epage><pages>405-414</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>33278432</pmid><doi>10.1016/j.ijbiomac.2020.11.202</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2021-01, Vol.167, p.405-414 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_pubmed_primary_33278432 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Amino Acid Substitution beta-Mannosidase - chemistry beta-Mannosidase - genetics Biochemistry & Molecular Biology Catalysis Chemistry Chemistry, Applied Enzyme Activation Enzyme Stability High sensitivity Hydrogen-Ion Concentration Kinetic stability Kinetics Life Sciences & Biomedicine Models, Molecular Mutation Physical Sciences Polymer Science Protein Conformation Protein Engineering - methods Rationally combined strategy Science & Technology Temperature Thermodynamics |
title | Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20kinetic%20stability%20of%20a%20hyperthermostable%20%CE%B2-mannanase%20by%20a%20rationally%20combined%20strategy&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Liu,%20Zhemin&rft.date=2021-01-15&rft.volume=167&rft.spage=405&rft.epage=414&rft.pages=405-414&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2020.11.202&rft_dat=%3Cpubmed_webof%3E33278432%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33278432&rft_els_id=S0141813020351400&rfr_iscdi=true |