Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy

Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2021-01, Vol.167, p.405-414
Hauptverfasser: Liu, Zhemin, Liang, Qingping, Wang, Peng, Kong, Qing, Fu, Xiaodan, Mou, Haijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 405
container_title International journal of biological macromolecules
container_volume 167
creator Liu, Zhemin
Liang, Qingping
Wang, Peng
Kong, Qing
Fu, Xiaodan
Mou, Haijin
description Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.
doi_str_mv 10.1016/j.ijbiomac.2020.11.202
format Article
fullrecord <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_pubmed_primary_33278432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813020351400</els_id><sourcerecordid>33278432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</originalsourceid><addsrcrecordid>eNqNkMtOwzAURC0EgvL4BeQ9SrHjNLF3oIpHpUpsYG35cQMuSVw5blF-iw_hm3AosIXVSHNnRroHoXNKppTQ8nI1dSvtfKvMNCd5Mumoe2hCeSUyQgjbRxNCC5pxysgROu77VXLLGeWH6IixvOIFyycIFu06-K3rnnF8AfzqOojO4D4q7RoXB-xrrPDLsIaQ7qH146UB_PGetarrVKd6wHpImaCi851qmgEb3-o0ZNNMcuF5OEUHtWp6OPvWE_R0e_M4v8-WD3eL-fUyM6zkMROWQ25VMVOWi6qmhAieF8JYXRcVqSptCdNG5JUubMlmTBBthQXBa00LMyPsBJW7XRN83weo5Tq4VoVBUiJHbnIlf7jJkZukdNRUPN8V1xvdgv2t_YBKgYtd4A20r3vjoDPwGxvJkrLkLB_J85Tm_0_PXfxCN_ebLqbq1a4KidPWQZDfdesCmCitd3898wk28aWN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</creator><creatorcontrib>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</creatorcontrib><description>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2020.11.202</identifier><identifier>PMID: 33278432</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Amino Acid Substitution ; beta-Mannosidase - chemistry ; beta-Mannosidase - genetics ; Biochemistry &amp; Molecular Biology ; Catalysis ; Chemistry ; Chemistry, Applied ; Enzyme Activation ; Enzyme Stability ; High sensitivity ; Hydrogen-Ion Concentration ; Kinetic stability ; Kinetics ; Life Sciences &amp; Biomedicine ; Models, Molecular ; Mutation ; Physical Sciences ; Polymer Science ; Protein Conformation ; Protein Engineering - methods ; Rationally combined strategy ; Science &amp; Technology ; Temperature ; Thermodynamics</subject><ispartof>International journal of biological macromolecules, 2021-01, Vol.167, p.405-414</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606683200038</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</citedby><cites>FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2020.11.202$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33278432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhemin</creatorcontrib><creatorcontrib>Liang, Qingping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Kong, Qing</creatorcontrib><creatorcontrib>Fu, Xiaodan</creatorcontrib><creatorcontrib>Mou, Haijin</creatorcontrib><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><title>International journal of biological macromolecules</title><addtitle>INT J BIOL MACROMOL</addtitle><addtitle>Int J Biol Macromol</addtitle><description>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</description><subject>Amino Acid Substitution</subject><subject>beta-Mannosidase - chemistry</subject><subject>beta-Mannosidase - genetics</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry, Applied</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>High sensitivity</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetic stability</subject><subject>Kinetics</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Rationally combined strategy</subject><subject>Science &amp; Technology</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAURC0EgvL4BeQ9SrHjNLF3oIpHpUpsYG35cQMuSVw5blF-iw_hm3AosIXVSHNnRroHoXNKppTQ8nI1dSvtfKvMNCd5Mumoe2hCeSUyQgjbRxNCC5pxysgROu77VXLLGeWH6IixvOIFyycIFu06-K3rnnF8AfzqOojO4D4q7RoXB-xrrPDLsIaQ7qH146UB_PGetarrVKd6wHpImaCi851qmgEb3-o0ZNNMcuF5OEUHtWp6OPvWE_R0e_M4v8-WD3eL-fUyM6zkMROWQ25VMVOWi6qmhAieF8JYXRcVqSptCdNG5JUubMlmTBBthQXBa00LMyPsBJW7XRN83weo5Tq4VoVBUiJHbnIlf7jJkZukdNRUPN8V1xvdgv2t_YBKgYtd4A20r3vjoDPwGxvJkrLkLB_J85Tm_0_PXfxCN_ebLqbq1a4KidPWQZDfdesCmCitd3898wk28aWN</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Liu, Zhemin</creator><creator>Liang, Qingping</creator><creator>Wang, Peng</creator><creator>Kong, Qing</creator><creator>Fu, Xiaodan</creator><creator>Mou, Haijin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</title><author>Liu, Zhemin ; Liang, Qingping ; Wang, Peng ; Kong, Qing ; Fu, Xiaodan ; Mou, Haijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9d8e2da45ad897f10098249cdbf47077bd03bc927b4d635390bd9de98fb14c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Substitution</topic><topic>beta-Mannosidase - chemistry</topic><topic>beta-Mannosidase - genetics</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry, Applied</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>High sensitivity</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetic stability</topic><topic>Kinetics</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Rationally combined strategy</topic><topic>Science &amp; Technology</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhemin</creatorcontrib><creatorcontrib>Liang, Qingping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Kong, Qing</creatorcontrib><creatorcontrib>Fu, Xiaodan</creatorcontrib><creatorcontrib>Mou, Haijin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhemin</au><au>Liang, Qingping</au><au>Wang, Peng</au><au>Kong, Qing</au><au>Fu, Xiaodan</au><au>Mou, Haijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy</atitle><jtitle>International journal of biological macromolecules</jtitle><stitle>INT J BIOL MACROMOL</stitle><addtitle>Int J Biol Macromol</addtitle><date>2021-01-15</date><risdate>2021</risdate><volume>167</volume><spage>405</spage><epage>414</epage><pages>405-414</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>33278432</pmid><doi>10.1016/j.ijbiomac.2020.11.202</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2021-01, Vol.167, p.405-414
issn 0141-8130
1879-0003
language eng
recordid cdi_pubmed_primary_33278432
source MEDLINE; Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Amino Acid Substitution
beta-Mannosidase - chemistry
beta-Mannosidase - genetics
Biochemistry & Molecular Biology
Catalysis
Chemistry
Chemistry, Applied
Enzyme Activation
Enzyme Stability
High sensitivity
Hydrogen-Ion Concentration
Kinetic stability
Kinetics
Life Sciences & Biomedicine
Models, Molecular
Mutation
Physical Sciences
Polymer Science
Protein Conformation
Protein Engineering - methods
Rationally combined strategy
Science & Technology
Temperature
Thermodynamics
title Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20kinetic%20stability%20of%20a%20hyperthermostable%20%CE%B2-mannanase%20by%20a%20rationally%20combined%20strategy&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Liu,%20Zhemin&rft.date=2021-01-15&rft.volume=167&rft.spage=405&rft.epage=414&rft.pages=405-414&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2020.11.202&rft_dat=%3Cpubmed_webof%3E33278432%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33278432&rft_els_id=S0141813020351400&rfr_iscdi=true