Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae
The rate of the triple-α reaction that forms 12 C affects 1 , 2 the synthesis of heavy elements in the Ga–Cd range in proton-rich neutrino-driven outflows of core-collapse supernovae 3 – 5 . Initially, these outflows contain only protons and neutrons; these later combine to form α particles, then 12...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-12, Vol.588 (7836), p.57-60 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 7836 |
container_start_page | 57 |
container_title | Nature (London) |
container_volume | 588 |
creator | Jin, Shilun Roberts, Luke F. Austin, Sam M. Schatz, Hendrik |
description | The rate of the triple-α reaction that forms
12
C affects
1
,
2
the synthesis of heavy elements in the Ga–Cd range in proton-rich neutrino-driven outflows of core-collapse supernovae
3
–
5
. Initially, these outflows contain only protons and neutrons; these later combine to form α particles, then
12
C nuclei via the triple-α reaction, and eventually heavier nuclei as the material expands and cools. Previous experimental work
6
,
7
demonstrated that despite the high temperatures encountered in these environments, the reaction is dominated by the well characterized Hoyle state resonance in
12
C nuclei. At sufficiently high nucleon densities, however, proton- and neutron-scattering processes may alter the effective width of the Hoyle state
8
,
9
. This raises the questions of what the reaction rate in supernova outflows is, and how changes affect nucleosynthesis predictions. Here we report that in proton-rich core-collapse supernova outflows, these hitherto neglected processes enhance the triple-α reaction rate by up to an order of magnitude. The larger reaction rate suppresses the production of heavy proton-rich isotopes that are formed by the
νp
process
3
–
5
(where
ν
is the neutrino and
p
is the proton) in the innermost ejected material of supernovae
10
–
13
. Previous work on the rate enhancement mechanism
9
did not anticipate the importance of this enhancement for proton-rich nucleosynthesis. Because the in-medium contribution to the triple-α reaction rate must be present at high densities, this effect needs to be included in supernova nucleosynthesis models. This enhancement also differs from earlier sensitivity studies that explored variations of the unenhanced rate by a constant factor
1
,
2
, because the enhancement depends on the evolving thermodynamic conditions. The resulting suppression of heavy-element nucleosynthesis for realistic conditions casts doubt on the
νp
process being the explanation for the anomalously high abundances of
92,94
Mo and
96,98
Ru isotopes in the Solar System
1
,
3
,
14
and for the signatures of early Universe element synthesis in the Ga–Cd range found in the spectra of ancient metal-poor stars
15
–
20
.
The triple-α reaction rate in proton-rich core-collapse supernovae is found to be enhanced at high nucleon densities, suppressing the formation of proton-rich nuclei from gallium to cadmium. |
doi_str_mv | 10.1038/s41586-020-2948-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33268864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473447313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-23da1dfd18912b7d34c808646ce69b5568f10049a12c83b0e2169db7a7c68cf93</originalsourceid><addsrcrecordid>eNqNkc9qFTEUh4Mo9lp9ADcy4EaQ1Jwkk2SWcql_oMWNrkMmc8abMje5JjOVPpYv4jM1l6kVBKGLkLP4fodfvhDyEtgZMGHeFQmtUZRxRnknDdWPyAakVlQqox-TDWPcUGaEOiHPSrlijLWg5VNyIgRXxii5IZfnceeix6GZczhMSH__ajI6P4cU6zAsHktzyGlOkebgd01c_ISp3MR5hyWUJsSmLAfMMV07fE6ejG4q-OLuPiXfPpx_3X6iF18-ft6-v6BeaD5TLgYHwziA6YD3ehDSG1brKI-q69tWmREYk50D7o3oGXJQ3dBrp70yfuzEKXmz7q3NfixYZrsPxeM0uYhpKZZLpbQWCqCir_9Br9KSY21XKS1kPSAqBSvlcyol42gPOexdvrHA7NG1XV3b6toeXVtdM6_uNi_9Hof7xB-5FTAr8BP7NBYfsIq-x46_0bVGdKpOwLZhdkfp27TEuUbfPjxaab7SpRLxO-a_b_x__VuMvqqd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473447313</pqid></control><display><type>article</type><title>Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Jin, Shilun ; Roberts, Luke F. ; Austin, Sam M. ; Schatz, Hendrik</creator><creatorcontrib>Jin, Shilun ; Roberts, Luke F. ; Austin, Sam M. ; Schatz, Hendrik</creatorcontrib><description>The rate of the triple-α reaction that forms
12
C affects
1
,
2
the synthesis of heavy elements in the Ga–Cd range in proton-rich neutrino-driven outflows of core-collapse supernovae
3
–
5
. Initially, these outflows contain only protons and neutrons; these later combine to form α particles, then
12
C nuclei via the triple-α reaction, and eventually heavier nuclei as the material expands and cools. Previous experimental work
6
,
7
demonstrated that despite the high temperatures encountered in these environments, the reaction is dominated by the well characterized Hoyle state resonance in
12
C nuclei. At sufficiently high nucleon densities, however, proton- and neutron-scattering processes may alter the effective width of the Hoyle state
8
,
9
. This raises the questions of what the reaction rate in supernova outflows is, and how changes affect nucleosynthesis predictions. Here we report that in proton-rich core-collapse supernova outflows, these hitherto neglected processes enhance the triple-α reaction rate by up to an order of magnitude. The larger reaction rate suppresses the production of heavy proton-rich isotopes that are formed by the
νp
process
3
–
5
(where
ν
is the neutrino and
p
is the proton) in the innermost ejected material of supernovae
10
–
13
. Previous work on the rate enhancement mechanism
9
did not anticipate the importance of this enhancement for proton-rich nucleosynthesis. Because the in-medium contribution to the triple-α reaction rate must be present at high densities, this effect needs to be included in supernova nucleosynthesis models. This enhancement also differs from earlier sensitivity studies that explored variations of the unenhanced rate by a constant factor
1
,
2
, because the enhancement depends on the evolving thermodynamic conditions. The resulting suppression of heavy-element nucleosynthesis for realistic conditions casts doubt on the
νp
process being the explanation for the anomalously high abundances of
92,94
Mo and
96,98
Ru isotopes in the Solar System
1
,
3
,
14
and for the signatures of early Universe element synthesis in the Ga–Cd range found in the spectra of ancient metal-poor stars
15
–
20
.
The triple-α reaction rate in proton-rich core-collapse supernovae is found to be enhanced at high nucleon densities, suppressing the formation of proton-rich nuclei from gallium to cadmium.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2948-7</identifier><identifier>PMID: 33268864</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/34/867 ; 639/766/387/1127 ; Cadmium ; Entropy ; Gallium ; Heavy elements ; High temperature ; Historical metallurgy ; Humanities and Social Sciences ; Isotopes ; Laboratories ; multidisciplinary ; Multidisciplinary Sciences ; Neutrinos ; Neutrons ; Nuclear fusion ; Nuclei ; Nuclei (nuclear physics) ; Outflow ; Protons ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Solar system ; Supernova ; Supernovae ; Wind</subject><ispartof>Nature (London), 2020-12, Vol.588 (7836), p.57-60</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Dec 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000595839600010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c372t-23da1dfd18912b7d34c808646ce69b5568f10049a12c83b0e2169db7a7c68cf93</citedby><cites>FETCH-LOGICAL-c372t-23da1dfd18912b7d34c808646ce69b5568f10049a12c83b0e2169db7a7c68cf93</cites><orcidid>0000-0001-7364-7946 ; 0000-0002-2868-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33268864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Shilun</creatorcontrib><creatorcontrib>Roberts, Luke F.</creatorcontrib><creatorcontrib>Austin, Sam M.</creatorcontrib><creatorcontrib>Schatz, Hendrik</creatorcontrib><title>Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>NATURE</addtitle><addtitle>Nature</addtitle><description>The rate of the triple-α reaction that forms
12
C affects
1
,
2
the synthesis of heavy elements in the Ga–Cd range in proton-rich neutrino-driven outflows of core-collapse supernovae
3
–
5
. Initially, these outflows contain only protons and neutrons; these later combine to form α particles, then
12
C nuclei via the triple-α reaction, and eventually heavier nuclei as the material expands and cools. Previous experimental work
6
,
7
demonstrated that despite the high temperatures encountered in these environments, the reaction is dominated by the well characterized Hoyle state resonance in
12
C nuclei. At sufficiently high nucleon densities, however, proton- and neutron-scattering processes may alter the effective width of the Hoyle state
8
,
9
. This raises the questions of what the reaction rate in supernova outflows is, and how changes affect nucleosynthesis predictions. Here we report that in proton-rich core-collapse supernova outflows, these hitherto neglected processes enhance the triple-α reaction rate by up to an order of magnitude. The larger reaction rate suppresses the production of heavy proton-rich isotopes that are formed by the
νp
process
3
–
5
(where
ν
is the neutrino and
p
is the proton) in the innermost ejected material of supernovae
10
–
13
. Previous work on the rate enhancement mechanism
9
did not anticipate the importance of this enhancement for proton-rich nucleosynthesis. Because the in-medium contribution to the triple-α reaction rate must be present at high densities, this effect needs to be included in supernova nucleosynthesis models. This enhancement also differs from earlier sensitivity studies that explored variations of the unenhanced rate by a constant factor
1
,
2
, because the enhancement depends on the evolving thermodynamic conditions. The resulting suppression of heavy-element nucleosynthesis for realistic conditions casts doubt on the
νp
process being the explanation for the anomalously high abundances of
92,94
Mo and
96,98
Ru isotopes in the Solar System
1
,
3
,
14
and for the signatures of early Universe element synthesis in the Ga–Cd range found in the spectra of ancient metal-poor stars
15
–
20
.
The triple-α reaction rate in proton-rich core-collapse supernovae is found to be enhanced at high nucleon densities, suppressing the formation of proton-rich nuclei from gallium to cadmium.</description><subject>639/766/34/867</subject><subject>639/766/387/1127</subject><subject>Cadmium</subject><subject>Entropy</subject><subject>Gallium</subject><subject>Heavy elements</subject><subject>High temperature</subject><subject>Historical metallurgy</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Laboratories</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Neutrinos</subject><subject>Neutrons</subject><subject>Nuclear fusion</subject><subject>Nuclei</subject><subject>Nuclei (nuclear physics)</subject><subject>Outflow</subject><subject>Protons</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Solar system</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Wind</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc9qFTEUh4Mo9lp9ADcy4EaQ1Jwkk2SWcql_oMWNrkMmc8abMje5JjOVPpYv4jM1l6kVBKGLkLP4fodfvhDyEtgZMGHeFQmtUZRxRnknDdWPyAakVlQqox-TDWPcUGaEOiHPSrlijLWg5VNyIgRXxii5IZfnceeix6GZczhMSH__ajI6P4cU6zAsHktzyGlOkebgd01c_ISp3MR5hyWUJsSmLAfMMV07fE6ejG4q-OLuPiXfPpx_3X6iF18-ft6-v6BeaD5TLgYHwziA6YD3ehDSG1brKI-q69tWmREYk50D7o3oGXJQ3dBrp70yfuzEKXmz7q3NfixYZrsPxeM0uYhpKZZLpbQWCqCir_9Br9KSY21XKS1kPSAqBSvlcyol42gPOexdvrHA7NG1XV3b6toeXVtdM6_uNi_9Hof7xB-5FTAr8BP7NBYfsIq-x46_0bVGdKpOwLZhdkfp27TEuUbfPjxaab7SpRLxO-a_b_x__VuMvqqd</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Jin, Shilun</creator><creator>Roberts, Luke F.</creator><creator>Austin, Sam M.</creator><creator>Schatz, Hendrik</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7364-7946</orcidid><orcidid>https://orcid.org/0000-0002-2868-8658</orcidid></search><sort><creationdate>20201203</creationdate><title>Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae</title><author>Jin, Shilun ; Roberts, Luke F. ; Austin, Sam M. ; Schatz, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-23da1dfd18912b7d34c808646ce69b5568f10049a12c83b0e2169db7a7c68cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/34/867</topic><topic>639/766/387/1127</topic><topic>Cadmium</topic><topic>Entropy</topic><topic>Gallium</topic><topic>Heavy elements</topic><topic>High temperature</topic><topic>Historical metallurgy</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Laboratories</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Neutrinos</topic><topic>Neutrons</topic><topic>Nuclear fusion</topic><topic>Nuclei</topic><topic>Nuclei (nuclear physics)</topic><topic>Outflow</topic><topic>Protons</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Solar system</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Shilun</creatorcontrib><creatorcontrib>Roberts, Luke F.</creatorcontrib><creatorcontrib>Austin, Sam M.</creatorcontrib><creatorcontrib>Schatz, Hendrik</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Shilun</au><au>Roberts, Luke F.</au><au>Austin, Sam M.</au><au>Schatz, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><stitle>NATURE</stitle><addtitle>Nature</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>588</volume><issue>7836</issue><spage>57</spage><epage>60</epage><pages>57-60</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The rate of the triple-α reaction that forms
12
C affects
1
,
2
the synthesis of heavy elements in the Ga–Cd range in proton-rich neutrino-driven outflows of core-collapse supernovae
3
–
5
. Initially, these outflows contain only protons and neutrons; these later combine to form α particles, then
12
C nuclei via the triple-α reaction, and eventually heavier nuclei as the material expands and cools. Previous experimental work
6
,
7
demonstrated that despite the high temperatures encountered in these environments, the reaction is dominated by the well characterized Hoyle state resonance in
12
C nuclei. At sufficiently high nucleon densities, however, proton- and neutron-scattering processes may alter the effective width of the Hoyle state
8
,
9
. This raises the questions of what the reaction rate in supernova outflows is, and how changes affect nucleosynthesis predictions. Here we report that in proton-rich core-collapse supernova outflows, these hitherto neglected processes enhance the triple-α reaction rate by up to an order of magnitude. The larger reaction rate suppresses the production of heavy proton-rich isotopes that are formed by the
νp
process
3
–
5
(where
ν
is the neutrino and
p
is the proton) in the innermost ejected material of supernovae
10
–
13
. Previous work on the rate enhancement mechanism
9
did not anticipate the importance of this enhancement for proton-rich nucleosynthesis. Because the in-medium contribution to the triple-α reaction rate must be present at high densities, this effect needs to be included in supernova nucleosynthesis models. This enhancement also differs from earlier sensitivity studies that explored variations of the unenhanced rate by a constant factor
1
,
2
, because the enhancement depends on the evolving thermodynamic conditions. The resulting suppression of heavy-element nucleosynthesis for realistic conditions casts doubt on the
νp
process being the explanation for the anomalously high abundances of
92,94
Mo and
96,98
Ru isotopes in the Solar System
1
,
3
,
14
and for the signatures of early Universe element synthesis in the Ga–Cd range found in the spectra of ancient metal-poor stars
15
–
20
.
The triple-α reaction rate in proton-rich core-collapse supernovae is found to be enhanced at high nucleon densities, suppressing the formation of proton-rich nuclei from gallium to cadmium.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33268864</pmid><doi>10.1038/s41586-020-2948-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7364-7946</orcidid><orcidid>https://orcid.org/0000-0002-2868-8658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7836), p.57-60 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmed_primary_33268864 |
source | Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 639/766/34/867 639/766/387/1127 Cadmium Entropy Gallium Heavy elements High temperature Historical metallurgy Humanities and Social Sciences Isotopes Laboratories multidisciplinary Multidisciplinary Sciences Neutrinos Neutrons Nuclear fusion Nuclei Nuclei (nuclear physics) Outflow Protons Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Solar system Supernova Supernovae Wind |
title | Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20triple-%CE%B1%20reaction%20reduces%20proton-rich%20nucleosynthesis%20in%20supernovae&rft.jtitle=Nature%20(London)&rft.au=Jin,%20Shilun&rft.date=2020-12-03&rft.volume=588&rft.issue=7836&rft.spage=57&rft.epage=60&rft.pages=57-60&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2948-7&rft_dat=%3Cproquest_pubme%3E2473447313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473447313&rft_id=info:pmid/33268864&rfr_iscdi=true |