Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field

A combination of bioinformatics analysis and transgenic experiments identifies a negative regulator of leaf photosynthesis in rice. Abstract Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2021-02, Vol.72 (5), p.1836-1849
Hauptverfasser: Chen, Faming, Zheng, Guangyong, Qu, Mingnan, Wang, Yanjie, Lyu, Ming-Ju Amy, Zhu, Xin-Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 5
container_start_page 1836
container_title Journal of experimental botany
container_volume 72
creator Chen, Faming
Zheng, Guangyong
Qu, Mingnan
Wang, Yanjie
Lyu, Ming-Ju Amy
Zhu, Xin-Guang
description A combination of bioinformatics analysis and transgenic experiments identifies a negative regulator of leaf photosynthesis in rice. Abstract Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.
doi_str_mv 10.1093/jxb/eraa566
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33258954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jxb/eraa566</oup_id><sourcerecordid>2466038741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f95b42b9a55eefbf4c404710d5ec5d46b8d6e47303a195b3fb34aee97180a7b43</originalsourceid><addsrcrecordid>eNqNkc9v0zAUxy0EYmVw4o58Qkgomx3b-XGsqqytVi1ozZA4RbbzzDxSu8SJYPz1eGrZbhOn9w6f71dPn4fQe0rOKCnZ-d1vdQ6DlCLLXqAZ5RlJUs7oSzQjJE0TUor8BL0J4Y4QIogQr9EJY6koSsFn6M-l8_qHdd-xn0Z8VS3nzfprha-r5c1m3tTXuL7AX1Z1U2-_XTWrarveYoqt0wPIAAEPVgPuQRq8v_WjD_duvIVgA5auw8r6nQwB7wffTXq03sUkjgA2FvruLXplZB_g3XGeopuLqlmskk29XC_mm0QzkY-JKYXiqSqlEABGGa454TklnQAtOp6posuA54wwSSPKjGJcApQ5LYjMFWen6NOhN97xc4IwtjsbNPS9dOCn0KY8ywgrck4j-vmA6sGHMIBp94PdyeG-paR9kN1G2e1RdqQ_HIsntYPukf1n96nuFyhvgrbgNDxi8R0Zy9OiLOKWFpEu_p9e2FE-GF34yY0x-vEQ9dP-2ZP_AkdGqFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466038741</pqid></control><display><type>article</type><title>Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Faming ; Zheng, Guangyong ; Qu, Mingnan ; Wang, Yanjie ; Lyu, Ming-Ju Amy ; Zhu, Xin-Guang</creator><creatorcontrib>Chen, Faming ; Zheng, Guangyong ; Qu, Mingnan ; Wang, Yanjie ; Lyu, Ming-Ju Amy ; Zhu, Xin-Guang</creatorcontrib><description>A combination of bioinformatics analysis and transgenic experiments identifies a negative regulator of leaf photosynthesis in rice. Abstract Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/eraa566</identifier><identifier>PMID: 33258954</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Biomass ; Life Sciences &amp; Biomedicine ; Oryza - genetics ; Photosynthesis ; Plant Leaves - physiology ; Plant Proteins - genetics ; Plant Proteins - physiology ; Plant Sciences ; Science &amp; Technology ; Transcription Factors - genetics ; Transcription Factors - physiology</subject><ispartof>Journal of experimental botany, 2021-02, Vol.72 (5), p.1836-1849</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000637289800028</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c357t-f95b42b9a55eefbf4c404710d5ec5d46b8d6e47303a195b3fb34aee97180a7b43</citedby><cites>FETCH-LOGICAL-c357t-f95b42b9a55eefbf4c404710d5ec5d46b8d6e47303a195b3fb34aee97180a7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33258954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Faming</creatorcontrib><creatorcontrib>Zheng, Guangyong</creatorcontrib><creatorcontrib>Qu, Mingnan</creatorcontrib><creatorcontrib>Wang, Yanjie</creatorcontrib><creatorcontrib>Lyu, Ming-Ju Amy</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><title>Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field</title><title>Journal of experimental botany</title><addtitle>J EXP BOT</addtitle><addtitle>J Exp Bot</addtitle><description>A combination of bioinformatics analysis and transgenic experiments identifies a negative regulator of leaf photosynthesis in rice. Abstract Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.</description><subject>Biomass</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Oryza - genetics</subject><subject>Photosynthesis</subject><subject>Plant Leaves - physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - physiology</subject><subject>Plant Sciences</subject><subject>Science &amp; Technology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9v0zAUxy0EYmVw4o58Qkgomx3b-XGsqqytVi1ozZA4RbbzzDxSu8SJYPz1eGrZbhOn9w6f71dPn4fQe0rOKCnZ-d1vdQ6DlCLLXqAZ5RlJUs7oSzQjJE0TUor8BL0J4Y4QIogQr9EJY6koSsFn6M-l8_qHdd-xn0Z8VS3nzfprha-r5c1m3tTXuL7AX1Z1U2-_XTWrarveYoqt0wPIAAEPVgPuQRq8v_WjD_duvIVgA5auw8r6nQwB7wffTXq03sUkjgA2FvruLXplZB_g3XGeopuLqlmskk29XC_mm0QzkY-JKYXiqSqlEABGGa454TklnQAtOp6posuA54wwSSPKjGJcApQ5LYjMFWen6NOhN97xc4IwtjsbNPS9dOCn0KY8ywgrck4j-vmA6sGHMIBp94PdyeG-paR9kN1G2e1RdqQ_HIsntYPukf1n96nuFyhvgrbgNDxi8R0Zy9OiLOKWFpEu_p9e2FE-GF34yY0x-vEQ9dP-2ZP_AkdGqFA</recordid><startdate>20210227</startdate><enddate>20210227</enddate><creator>Chen, Faming</creator><creator>Zheng, Guangyong</creator><creator>Qu, Mingnan</creator><creator>Wang, Yanjie</creator><creator>Lyu, Ming-Ju Amy</creator><creator>Zhu, Xin-Guang</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210227</creationdate><title>Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field</title><author>Chen, Faming ; Zheng, Guangyong ; Qu, Mingnan ; Wang, Yanjie ; Lyu, Ming-Ju Amy ; Zhu, Xin-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f95b42b9a55eefbf4c404710d5ec5d46b8d6e47303a195b3fb34aee97180a7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomass</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Oryza - genetics</topic><topic>Photosynthesis</topic><topic>Plant Leaves - physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - physiology</topic><topic>Plant Sciences</topic><topic>Science &amp; Technology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Faming</creatorcontrib><creatorcontrib>Zheng, Guangyong</creatorcontrib><creatorcontrib>Qu, Mingnan</creatorcontrib><creatorcontrib>Wang, Yanjie</creatorcontrib><creatorcontrib>Lyu, Ming-Ju Amy</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Faming</au><au>Zheng, Guangyong</au><au>Qu, Mingnan</au><au>Wang, Yanjie</au><au>Lyu, Ming-Ju Amy</au><au>Zhu, Xin-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field</atitle><jtitle>Journal of experimental botany</jtitle><stitle>J EXP BOT</stitle><addtitle>J Exp Bot</addtitle><date>2021-02-27</date><risdate>2021</risdate><volume>72</volume><issue>5</issue><spage>1836</spage><epage>1849</epage><pages>1836-1849</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>A combination of bioinformatics analysis and transgenic experiments identifies a negative regulator of leaf photosynthesis in rice. Abstract Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>33258954</pmid><doi>10.1093/jxb/eraa566</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2021-02, Vol.72 (5), p.1836-1849
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmed_primary_33258954
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biomass
Life Sciences & Biomedicine
Oryza - genetics
Photosynthesis
Plant Leaves - physiology
Plant Proteins - genetics
Plant Proteins - physiology
Plant Sciences
Science & Technology
Transcription Factors - genetics
Transcription Factors - physiology
title Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knocking%20out%20NEGATIVE%20REGULATOR%20OF%20PHOTOSYNTHESIS%201%20increases%20rice%20leaf%20photosynthesis%20and%20biomass%20production%20in%20the%20field&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Chen,%20Faming&rft.date=2021-02-27&rft.volume=72&rft.issue=5&rft.spage=1836&rft.epage=1849&rft.pages=1836-1849&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/eraa566&rft_dat=%3Cproquest_pubme%3E2466038741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466038741&rft_id=info:pmid/33258954&rft_oup_id=10.1093/jxb/eraa566&rfr_iscdi=true