Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283

Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43 reduces tumorigenicity, and boosts survival in preclin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EBioMedicine 2020-12, Vol.62, p.103134
Hauptverfasser: Pelaz, Sara G, Jaraíz-Rodríguez, Myriam, Álvarez-Vázquez, Andrea, Talaverón, Rocío, García-Vicente, Laura, Flores-Hernández, Raquel, Gómez de Cedrón, Marta, Tabernero, María, Ramírez de Molina, Ana, Lillo, Concepción, Medina, José M, Tabernero, Arantxa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103134
container_title EBioMedicine
container_volume 62
creator Pelaz, Sara G
Jaraíz-Rodríguez, Myriam
Álvarez-Vázquez, Andrea
Talaverón, Rocío
García-Vicente, Laura
Flores-Hernández, Raquel
Gómez de Cedrón, Marta
Tabernero, María
Ramírez de Molina, Ana
Lillo, Concepción
Medina, José M
Tabernero, Arantxa
description Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43 . Metabolic impairment induced by the c-Src inhibitor TAT-Cx43 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. TAT-Cx43 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. The reduced ability of TAT-Cx43 -treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43 . Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33254027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33254027</sourcerecordid><originalsourceid>FETCH-pubmed_primary_332540273</originalsourceid><addsrcrecordid>eNqFjssKwjAURIMgKuovyP2BQE3aqksRxb3dS5qm7ZU8ShLFLv1zFXXtapjDYZgBmTCeMco3eTom8xAuSZIss_QF1yMy5pxlacJWE_IohG9URNuAUVGUTqOETosQUWLsAS00Gp0REKIyIJXW4Q1vGL0DYatPuTmIrXfXpoXQKYn1awVtiyVGdBZcDZKevISyh2Jb0N095cDynLI1n5FhLXRQ829OyeKwL3ZH2l1Lo6pz59EI359_n_lf4Qk94Uys</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pelaz, Sara G ; Jaraíz-Rodríguez, Myriam ; Álvarez-Vázquez, Andrea ; Talaverón, Rocío ; García-Vicente, Laura ; Flores-Hernández, Raquel ; Gómez de Cedrón, Marta ; Tabernero, María ; Ramírez de Molina, Ana ; Lillo, Concepción ; Medina, José M ; Tabernero, Arantxa</creator><creatorcontrib>Pelaz, Sara G ; Jaraíz-Rodríguez, Myriam ; Álvarez-Vázquez, Andrea ; Talaverón, Rocío ; García-Vicente, Laura ; Flores-Hernández, Raquel ; Gómez de Cedrón, Marta ; Tabernero, María ; Ramírez de Molina, Ana ; Lillo, Concepción ; Medina, José M ; Tabernero, Arantxa</creatorcontrib><description>Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43 . Metabolic impairment induced by the c-Src inhibitor TAT-Cx43 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. TAT-Cx43 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. The reduced ability of TAT-Cx43 -treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43 . Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).</description><identifier>EISSN: 2352-3964</identifier><identifier>PMID: 33254027</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Disease Models, Animal ; Energy Metabolism - drug effects ; Extracellular Space ; Fluorocarbons - metabolism ; Glioma - drug therapy ; Glioma - metabolism ; Glioma - pathology ; Glucose - metabolism ; Glycolysis ; Humans ; Hydrocarbons, Brominated - metabolism ; Hydrogen-Ion Concentration ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; Models, Biological ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Peptides - pharmacology ; Rats ; Recombinant Fusion Proteins - pharmacology ; src-Family Kinases - antagonists &amp; inhibitors</subject><ispartof>EBioMedicine, 2020-12, Vol.62, p.103134</ispartof><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33254027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelaz, Sara G</creatorcontrib><creatorcontrib>Jaraíz-Rodríguez, Myriam</creatorcontrib><creatorcontrib>Álvarez-Vázquez, Andrea</creatorcontrib><creatorcontrib>Talaverón, Rocío</creatorcontrib><creatorcontrib>García-Vicente, Laura</creatorcontrib><creatorcontrib>Flores-Hernández, Raquel</creatorcontrib><creatorcontrib>Gómez de Cedrón, Marta</creatorcontrib><creatorcontrib>Tabernero, María</creatorcontrib><creatorcontrib>Ramírez de Molina, Ana</creatorcontrib><creatorcontrib>Lillo, Concepción</creatorcontrib><creatorcontrib>Medina, José M</creatorcontrib><creatorcontrib>Tabernero, Arantxa</creatorcontrib><title>Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43 . Metabolic impairment induced by the c-Src inhibitor TAT-Cx43 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. TAT-Cx43 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. The reduced ability of TAT-Cx43 -treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43 . Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - drug effects</subject><subject>Extracellular Space</subject><subject>Fluorocarbons - metabolism</subject><subject>Glioma - drug therapy</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hydrocarbons, Brominated - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Peptides - pharmacology</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>src-Family Kinases - antagonists &amp; inhibitors</subject><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjssKwjAURIMgKuovyP2BQE3aqksRxb3dS5qm7ZU8ShLFLv1zFXXtapjDYZgBmTCeMco3eTom8xAuSZIss_QF1yMy5pxlacJWE_IohG9URNuAUVGUTqOETosQUWLsAS00Gp0REKIyIJXW4Q1vGL0DYatPuTmIrXfXpoXQKYn1awVtiyVGdBZcDZKevISyh2Jb0N095cDynLI1n5FhLXRQ829OyeKwL3ZH2l1Lo6pz59EI359_n_lf4Qk94Uys</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Pelaz, Sara G</creator><creator>Jaraíz-Rodríguez, Myriam</creator><creator>Álvarez-Vázquez, Andrea</creator><creator>Talaverón, Rocío</creator><creator>García-Vicente, Laura</creator><creator>Flores-Hernández, Raquel</creator><creator>Gómez de Cedrón, Marta</creator><creator>Tabernero, María</creator><creator>Ramírez de Molina, Ana</creator><creator>Lillo, Concepción</creator><creator>Medina, José M</creator><creator>Tabernero, Arantxa</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>202012</creationdate><title>Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283</title><author>Pelaz, Sara G ; Jaraíz-Rodríguez, Myriam ; Álvarez-Vázquez, Andrea ; Talaverón, Rocío ; García-Vicente, Laura ; Flores-Hernández, Raquel ; Gómez de Cedrón, Marta ; Tabernero, María ; Ramírez de Molina, Ana ; Lillo, Concepción ; Medina, José M ; Tabernero, Arantxa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_332540273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - drug effects</topic><topic>Extracellular Space</topic><topic>Fluorocarbons - metabolism</topic><topic>Glioma - drug therapy</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hydrocarbons, Brominated - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Peptides - pharmacology</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>src-Family Kinases - antagonists &amp; inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelaz, Sara G</creatorcontrib><creatorcontrib>Jaraíz-Rodríguez, Myriam</creatorcontrib><creatorcontrib>Álvarez-Vázquez, Andrea</creatorcontrib><creatorcontrib>Talaverón, Rocío</creatorcontrib><creatorcontrib>García-Vicente, Laura</creatorcontrib><creatorcontrib>Flores-Hernández, Raquel</creatorcontrib><creatorcontrib>Gómez de Cedrón, Marta</creatorcontrib><creatorcontrib>Tabernero, María</creatorcontrib><creatorcontrib>Ramírez de Molina, Ana</creatorcontrib><creatorcontrib>Lillo, Concepción</creatorcontrib><creatorcontrib>Medina, José M</creatorcontrib><creatorcontrib>Tabernero, Arantxa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelaz, Sara G</au><au>Jaraíz-Rodríguez, Myriam</au><au>Álvarez-Vázquez, Andrea</au><au>Talaverón, Rocío</au><au>García-Vicente, Laura</au><au>Flores-Hernández, Raquel</au><au>Gómez de Cedrón, Marta</au><au>Tabernero, María</au><au>Ramírez de Molina, Ana</au><au>Lillo, Concepción</au><au>Medina, José M</au><au>Tabernero, Arantxa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2020-12</date><risdate>2020</risdate><volume>62</volume><spage>103134</spage><pages>103134-</pages><eissn>2352-3964</eissn><abstract>Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43 . Metabolic impairment induced by the c-Src inhibitor TAT-Cx43 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. TAT-Cx43 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. The reduced ability of TAT-Cx43 -treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43 . Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).</abstract><cop>Netherlands</cop><pmid>33254027</pmid></addata></record>
fulltext fulltext
identifier EISSN: 2352-3964
ispartof EBioMedicine, 2020-12, Vol.62, p.103134
issn 2352-3964
language eng
recordid cdi_pubmed_primary_33254027
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Antineoplastic Agents - pharmacology
Cell Line, Tumor
Disease Models, Animal
Energy Metabolism - drug effects
Extracellular Space
Fluorocarbons - metabolism
Glioma - drug therapy
Glioma - metabolism
Glioma - pathology
Glucose - metabolism
Glycolysis
Humans
Hydrocarbons, Brominated - metabolism
Hydrogen-Ion Concentration
Mice
Mitochondria - drug effects
Mitochondria - metabolism
Models, Biological
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Peptides - pharmacology
Rats
Recombinant Fusion Proteins - pharmacology
src-Family Kinases - antagonists & inhibitors
title Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20metabolic%20plasticity%20in%20glioma%20stem%20cells%20in%20vitro%20and%20in%20vivo%20through%20specific%20inhibition%20of%20c-Src%20by%20TAT-Cx43%20266-283&rft.jtitle=EBioMedicine&rft.au=Pelaz,%20Sara%20G&rft.date=2020-12&rft.volume=62&rft.spage=103134&rft.pages=103134-&rft.eissn=2352-3964&rft_id=info:doi/&rft_dat=%3Cpubmed%3E33254027%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33254027&rfr_iscdi=true