Overcoming the hydrophilicity of bacterial nanocellulose: Incorporation of the lipophilic coenzyme Q10 using lipid nanocarriers for dermal applications

[Display omitted] Although used in a wide range of medical and pharmaceutical applications, the potential of the natural biopolymer bacterial nanocellulose (BNC) as drug delivery system is by far not fully exploited. Particularly, the incorporation of lipophilic drugs is still considered as an unsol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2021-01, Vol.158, p.106-112
Hauptverfasser: Alkhatib, Yaser, Blume, Gabriele, Thamm, Jana, Steiniger, Frank, Kralisch, Dana, Fischer, Dagmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Although used in a wide range of medical and pharmaceutical applications, the potential of the natural biopolymer bacterial nanocellulose (BNC) as drug delivery system is by far not fully exploited. Particularly, the incorporation of lipophilic drugs is still considered as an unsolved task. In the present study, the homogeneous incorporation of the lipophilic coenzyme Q10 (CoQ10) into BNC was accomplished by several post-synthesis techniques utilizing different nanoemulsions and liposomes. All colloidal carriers were in the range of about 90–120 nm with negative zeta potentials and storage stabilities up to 30 days. The biphasic drug release profiles of loaded BNC were found to be dependent on the type of colloidal carrier and the loading technique. Favorable characteristics such as high mechanical stability and high loading capacity were retained after the incorporation of the lipophilic components. Penetration studies using excised porcine skin revealed CoQ10 distributions also in deeper skin layers dependent on the type of the colloidal carrier system. In conclusion, hydrophilic BNC could be loaded with water-insoluble drugs as shown for the model drug CoQ10 by the use of lipidic colloidal carriers which offers new possibilities of application in pharmacy and medicine.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2020.10.021