Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review

Dental caries is the most prevalent dental disease worldwide, and neural networks and artificial intelligence are increasingly being used in the field of dentistry. This systematic review aims to identify the state of the art of neural networks in caries detection and diagnosis. A search was conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2020-11, Vol.9 (11), p.3579
Hauptverfasser: Prados-Privado, María, García Villalón, Javier, Martínez-Martínez, Carlos Hugo, Ivorra, Carlos, Prados-Frutos, Juan Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3579
container_title Journal of clinical medicine
container_volume 9
creator Prados-Privado, María
García Villalón, Javier
Martínez-Martínez, Carlos Hugo
Ivorra, Carlos
Prados-Frutos, Juan Carlos
description Dental caries is the most prevalent dental disease worldwide, and neural networks and artificial intelligence are increasingly being used in the field of dentistry. This systematic review aims to identify the state of the art of neural networks in caries detection and diagnosis. A search was conducted in PubMed, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and ScienceDirect. Data extraction was performed independently by two reviewers. The quality of the selected studies was assessed using the Cochrane Handbook tool. Thirteen studies were included. Most of the included studies employed periapical, near-infrared light transillumination, and bitewing radiography. The image databases ranged from 87 to 3000 images, with a mean of 669 images. Seven of the included studies labeled the dental caries in each image by experienced dentists. Not all of the studies detailed how caries was defined, and not all detailed the type of carious lesion detected. Each study included in this review used a different neural network and different outcome metrics. All this variability complicates the conclusions that can be made about the reliability or not of a neural network to detect and diagnose caries. A comparison between neural network and dentist results is also necessary.
doi_str_mv 10.3390/jcm9113579
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33172056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459624139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-be2cd0cfbe63f34da4d28efe374cde966433aaa8b78af0f5fd0efa0d57b6bbc3</originalsourceid><addsrcrecordid>eNpdkUtLLDEQhYNcUVE3_gAJuLkIo3l10n0XF2TGF4iKj3VIpytjxunOmHQr_nsjvq1NFdTH4RwOQluU7HFekf2ZbStKeaGqJbTGiFIjwkv-59u9ijZTmpE8ZSkYVStolXOqGCnkGrqcQNebOR6b6CHhiTfTLiSfsOkaPIEebO9Dh2-T76b4HIaY2XPon0K8T__wAb5-Tj20pvcWX8Gjh6cNtOzMPMHm-15HN0eHN-OT0dnF8en44GxkhWL9qAZmG2JdDZI7LhojGlaCA66EbaCSUnBujClrVRpHXOEaAs6QplC1rGvL19H_N9nFULfQ2JwiW9OL6FsTn3UwXv_8dP5OT8OjVrISsmJZ4O-7QAwPA6Retz5ZmM9NB2FImomikkxQXmV05xc6C0PscjrNpKCkoJSITO2-UTaGlCK4TzOU6Neq9FdVGd7-bv8T_SiGvwDak5Bu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641051104</pqid></control><display><type>article</type><title>Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Prados-Privado, María ; García Villalón, Javier ; Martínez-Martínez, Carlos Hugo ; Ivorra, Carlos ; Prados-Frutos, Juan Carlos</creator><creatorcontrib>Prados-Privado, María ; García Villalón, Javier ; Martínez-Martínez, Carlos Hugo ; Ivorra, Carlos ; Prados-Frutos, Juan Carlos</creatorcontrib><description>Dental caries is the most prevalent dental disease worldwide, and neural networks and artificial intelligence are increasingly being used in the field of dentistry. This systematic review aims to identify the state of the art of neural networks in caries detection and diagnosis. A search was conducted in PubMed, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and ScienceDirect. Data extraction was performed independently by two reviewers. The quality of the selected studies was assessed using the Cochrane Handbook tool. Thirteen studies were included. Most of the included studies employed periapical, near-infrared light transillumination, and bitewing radiography. The image databases ranged from 87 to 3000 images, with a mean of 669 images. Seven of the included studies labeled the dental caries in each image by experienced dentists. Not all of the studies detailed how caries was defined, and not all detailed the type of carious lesion detected. Each study included in this review used a different neural network and different outcome metrics. All this variability complicates the conclusions that can be made about the reliability or not of a neural network to detect and diagnose caries. A comparison between neural network and dentist results is also necessary.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm9113579</identifier><identifier>PMID: 33172056</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agreements ; Algorithms ; Artificial intelligence ; Bias ; Clinical medicine ; Dental caries ; Dentistry ; Enamel ; Image databases ; Machine learning ; Neural networks ; Review ; Teeth</subject><ispartof>Journal of clinical medicine, 2020-11, Vol.9 (11), p.3579</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-be2cd0cfbe63f34da4d28efe374cde966433aaa8b78af0f5fd0efa0d57b6bbc3</citedby><cites>FETCH-LOGICAL-c472t-be2cd0cfbe63f34da4d28efe374cde966433aaa8b78af0f5fd0efa0d57b6bbc3</cites><orcidid>0000-0003-1464-0968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694692/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694692/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33172056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prados-Privado, María</creatorcontrib><creatorcontrib>García Villalón, Javier</creatorcontrib><creatorcontrib>Martínez-Martínez, Carlos Hugo</creatorcontrib><creatorcontrib>Ivorra, Carlos</creatorcontrib><creatorcontrib>Prados-Frutos, Juan Carlos</creatorcontrib><title>Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Dental caries is the most prevalent dental disease worldwide, and neural networks and artificial intelligence are increasingly being used in the field of dentistry. This systematic review aims to identify the state of the art of neural networks in caries detection and diagnosis. A search was conducted in PubMed, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and ScienceDirect. Data extraction was performed independently by two reviewers. The quality of the selected studies was assessed using the Cochrane Handbook tool. Thirteen studies were included. Most of the included studies employed periapical, near-infrared light transillumination, and bitewing radiography. The image databases ranged from 87 to 3000 images, with a mean of 669 images. Seven of the included studies labeled the dental caries in each image by experienced dentists. Not all of the studies detailed how caries was defined, and not all detailed the type of carious lesion detected. Each study included in this review used a different neural network and different outcome metrics. All this variability complicates the conclusions that can be made about the reliability or not of a neural network to detect and diagnose caries. A comparison between neural network and dentist results is also necessary.</description><subject>Agreements</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Clinical medicine</subject><subject>Dental caries</subject><subject>Dentistry</subject><subject>Enamel</subject><subject>Image databases</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Review</subject><subject>Teeth</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLLDEQhYNcUVE3_gAJuLkIo3l10n0XF2TGF4iKj3VIpytjxunOmHQr_nsjvq1NFdTH4RwOQluU7HFekf2ZbStKeaGqJbTGiFIjwkv-59u9ijZTmpE8ZSkYVStolXOqGCnkGrqcQNebOR6b6CHhiTfTLiSfsOkaPIEebO9Dh2-T76b4HIaY2XPon0K8T__wAb5-Tj20pvcWX8Gjh6cNtOzMPMHm-15HN0eHN-OT0dnF8en44GxkhWL9qAZmG2JdDZI7LhojGlaCA66EbaCSUnBujClrVRpHXOEaAs6QplC1rGvL19H_N9nFULfQ2JwiW9OL6FsTn3UwXv_8dP5OT8OjVrISsmJZ4O-7QAwPA6Retz5ZmM9NB2FImomikkxQXmV05xc6C0PscjrNpKCkoJSITO2-UTaGlCK4TzOU6Neq9FdVGd7-bv8T_SiGvwDak5Bu</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Prados-Privado, María</creator><creator>García Villalón, Javier</creator><creator>Martínez-Martínez, Carlos Hugo</creator><creator>Ivorra, Carlos</creator><creator>Prados-Frutos, Juan Carlos</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1464-0968</orcidid></search><sort><creationdate>20201106</creationdate><title>Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review</title><author>Prados-Privado, María ; García Villalón, Javier ; Martínez-Martínez, Carlos Hugo ; Ivorra, Carlos ; Prados-Frutos, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-be2cd0cfbe63f34da4d28efe374cde966433aaa8b78af0f5fd0efa0d57b6bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agreements</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Clinical medicine</topic><topic>Dental caries</topic><topic>Dentistry</topic><topic>Enamel</topic><topic>Image databases</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Review</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prados-Privado, María</creatorcontrib><creatorcontrib>García Villalón, Javier</creatorcontrib><creatorcontrib>Martínez-Martínez, Carlos Hugo</creatorcontrib><creatorcontrib>Ivorra, Carlos</creatorcontrib><creatorcontrib>Prados-Frutos, Juan Carlos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prados-Privado, María</au><au>García Villalón, Javier</au><au>Martínez-Martínez, Carlos Hugo</au><au>Ivorra, Carlos</au><au>Prados-Frutos, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>3579</spage><pages>3579-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Dental caries is the most prevalent dental disease worldwide, and neural networks and artificial intelligence are increasingly being used in the field of dentistry. This systematic review aims to identify the state of the art of neural networks in caries detection and diagnosis. A search was conducted in PubMed, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and ScienceDirect. Data extraction was performed independently by two reviewers. The quality of the selected studies was assessed using the Cochrane Handbook tool. Thirteen studies were included. Most of the included studies employed periapical, near-infrared light transillumination, and bitewing radiography. The image databases ranged from 87 to 3000 images, with a mean of 669 images. Seven of the included studies labeled the dental caries in each image by experienced dentists. Not all of the studies detailed how caries was defined, and not all detailed the type of carious lesion detected. Each study included in this review used a different neural network and different outcome metrics. All this variability complicates the conclusions that can be made about the reliability or not of a neural network to detect and diagnose caries. A comparison between neural network and dentist results is also necessary.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33172056</pmid><doi>10.3390/jcm9113579</doi><orcidid>https://orcid.org/0000-0003-1464-0968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2020-11, Vol.9 (11), p.3579
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmed_primary_33172056
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Agreements
Algorithms
Artificial intelligence
Bias
Clinical medicine
Dental caries
Dentistry
Enamel
Image databases
Machine learning
Neural networks
Review
Teeth
title Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dental%20Caries%20Diagnosis%20and%20Detection%20Using%20Neural%20Networks:%20A%20Systematic%20Review&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Prados-Privado,%20Mar%C3%ADa&rft.date=2020-11-06&rft.volume=9&rft.issue=11&rft.spage=3579&rft.pages=3579-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm9113579&rft_dat=%3Cproquest_pubme%3E2459624139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641051104&rft_id=info:pmid/33172056&rfr_iscdi=true