Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T maps obtained by deep learning-based variationa...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.19144 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 19144 |
container_title | Scientific reports |
container_volume | 10 |
creator | Zibetti, Marcelo V W Johnson, Patricia M Sharafi, Azadeh Hammernik, Kerstin Knoll, Florian Regatte, Ravinder R |
description | In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T
) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T
maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T
parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T
mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T
mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33154515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33154515</sourcerecordid><originalsourceid>FETCH-pubmed_primary_331545153</originalsourceid><addsrcrecordid>eNqFjksKwjAURYMgtmi3IG8DhTZpBh37wbF05KS82rTEtklIUj9DV-iWrKBj7-TC4R64MxLSJOMxZZQGJHLukkzhNM_SfEECxlKe8ZSH5HREI2sYtNKAqoZKirvRSigvsQe2jQtIX08Y0BipWtANdEoIOKP1ssdWwOg-_IpWopdaTZIS_qZt51Zk3mDvRPTtJVnvd8XmEJuxGkRdGisHtI_yd4b9HbwBzgtApA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zibetti, Marcelo V W ; Johnson, Patricia M ; Sharafi, Azadeh ; Hammernik, Kerstin ; Knoll, Florian ; Regatte, Ravinder R</creator><creatorcontrib>Zibetti, Marcelo V W ; Johnson, Patricia M ; Sharafi, Azadeh ; Hammernik, Kerstin ; Knoll, Florian ; Regatte, Ravinder R</creatorcontrib><description>In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T
) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T
maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T
parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T
mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T
mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.</description><identifier>EISSN: 2045-2322</identifier><identifier>PMID: 33154515</identifier><language>eng</language><publisher>England</publisher><subject>Adult ; Cartilage, Articular - diagnostic imaging ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Knee Joint - diagnostic imaging ; Magnetic Resonance Imaging - methods ; Male ; Retrospective Studies ; Young Adult</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19144</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5357-8656 ; 0000-0001-9572-4922 ; 0000-0003-1547-9969 ; 0000-0002-4607-7682 ; 0000-0002-2734-1409 ; 0000-0003-2856-3625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33154515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zibetti, Marcelo V W</creatorcontrib><creatorcontrib>Johnson, Patricia M</creatorcontrib><creatorcontrib>Sharafi, Azadeh</creatorcontrib><creatorcontrib>Hammernik, Kerstin</creatorcontrib><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Regatte, Ravinder R</creatorcontrib><title>Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T
) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T
maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T
parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T
mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T
mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.</description><subject>Adult</subject><subject>Cartilage, Articular - diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Retrospective Studies</subject><subject>Young Adult</subject><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjksKwjAURYMgtmi3IG8DhTZpBh37wbF05KS82rTEtklIUj9DV-iWrKBj7-TC4R64MxLSJOMxZZQGJHLukkzhNM_SfEECxlKe8ZSH5HREI2sYtNKAqoZKirvRSigvsQe2jQtIX08Y0BipWtANdEoIOKP1ssdWwOg-_IpWopdaTZIS_qZt51Zk3mDvRPTtJVnvd8XmEJuxGkRdGisHtI_yd4b9HbwBzgtApA</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Zibetti, Marcelo V W</creator><creator>Johnson, Patricia M</creator><creator>Sharafi, Azadeh</creator><creator>Hammernik, Kerstin</creator><creator>Knoll, Florian</creator><creator>Regatte, Ravinder R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid><orcidid>https://orcid.org/0000-0001-9572-4922</orcidid><orcidid>https://orcid.org/0000-0003-1547-9969</orcidid><orcidid>https://orcid.org/0000-0002-4607-7682</orcidid><orcidid>https://orcid.org/0000-0002-2734-1409</orcidid><orcidid>https://orcid.org/0000-0003-2856-3625</orcidid></search><sort><creationdate>20201105</creationdate><title>Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks</title><author>Zibetti, Marcelo V W ; Johnson, Patricia M ; Sharafi, Azadeh ; Hammernik, Kerstin ; Knoll, Florian ; Regatte, Ravinder R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_331545153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Cartilage, Articular - diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Retrospective Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zibetti, Marcelo V W</creatorcontrib><creatorcontrib>Johnson, Patricia M</creatorcontrib><creatorcontrib>Sharafi, Azadeh</creatorcontrib><creatorcontrib>Hammernik, Kerstin</creatorcontrib><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Regatte, Ravinder R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zibetti, Marcelo V W</au><au>Johnson, Patricia M</au><au>Sharafi, Azadeh</au><au>Hammernik, Kerstin</au><au>Knoll, Florian</au><au>Regatte, Ravinder R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19144</spage><pages>19144-</pages><eissn>2045-2322</eissn><abstract>In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T
) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T
maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T
parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T
mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T
mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.</abstract><cop>England</cop><pmid>33154515</pmid><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid><orcidid>https://orcid.org/0000-0001-9572-4922</orcidid><orcidid>https://orcid.org/0000-0003-1547-9969</orcidid><orcidid>https://orcid.org/0000-0002-4607-7682</orcidid><orcidid>https://orcid.org/0000-0002-2734-1409</orcidid><orcidid>https://orcid.org/0000-0003-2856-3625</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.19144 |
issn | 2045-2322 |
language | eng |
recordid | cdi_pubmed_primary_33154515 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Cartilage, Articular - diagnostic imaging Female Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Knee Joint - diagnostic imaging Magnetic Resonance Imaging - methods Male Retrospective Studies Young Adult |
title | Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20mono%20and%20biexponential%203D-T%201%CF%81%20mapping%20of%20knee%20cartilage%20using%20variational%20networks&rft.jtitle=Scientific%20reports&rft.au=Zibetti,%20Marcelo%20V%20W&rft.date=2020-11-05&rft.volume=10&rft.issue=1&rft.spage=19144&rft.pages=19144-&rft.eissn=2045-2322&rft_id=info:doi/&rft_dat=%3Cpubmed%3E33154515%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33154515&rfr_iscdi=true |