Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm

The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pain (Amsterdam) 2021-04, Vol.162 (4), p.1038-1046
Hauptverfasser: Bouhassira, Didier, Branders, Samuel, Attal, Nadine, Fernandes, Ana Mercia, Demolle, Dominique, Barbour, Julio, Ciampi de Andrade, Daniel, Pereira, Alvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 4
container_start_page 1038
container_title Pain (Amsterdam)
container_volume 162
creator Bouhassira, Didier
Branders, Samuel
Attal, Nadine
Fernandes, Ana Mercia
Demolle, Dominique
Barbour, Julio
Ciampi de Andrade, Daniel
Pereira, Alvaro
description The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.
doi_str_mv 10.1097/j.pain.0000000000002130
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33136982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457296676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</originalsourceid><addsrcrecordid>eNqNkFGP1CAUhYnRuLOrf0F5NDEdKVBafDMTXTfZqMnqM6H01nakpQKdyfx7qR0nxid5AC5859ybg9DLnGxzIss3--2k-3FL_lo0Z-QR2uRVSTMhKHuMNoQRnjFZyCt0HcJ-gSiVT9EVYzkTsqIbdHqIXse-7U3a3Yhdi6d0gzEGXOsADU6PsQP8CWbv0lfXG_wl9cYPp2GKbsB34yHRzp_e4gYOYN00pBrrscEHbfvm4qvxCEes7Xfn-9gNz9CTVtsAz8_nDfr24f3X3cfs_vPt3e7dfWY45SKjBgpW8lw2Dec0p4ZLInmjaWHqWlJTUsqEMKbW1BjZMlrVkpVMS1NLbljFbtCr1Xfy7ucMIaqhDwas1SO4OSjKi5JKIUqR0HJFjXcheGjV5PtB-5PKiVpyV3u15K7-zT0pX5ybzPUAzUX3J-gEvF6BI9SuDSYlbOCCJRtRCJHoxXEZpPp_etfH3xnv3DzGJOVnqbMRfPhh5yN41YG2sVOrvUyxprkJT1W2Pv0C6g-xNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457296676</pqid></control><display><type>article</type><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</creator><creatorcontrib>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</creatorcontrib><description>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</description><identifier>ISSN: 0304-3959</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1097/j.pain.0000000000002130</identifier><identifier>PMID: 33136982</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer</publisher><subject>Anesthesiology ; Clinical Neurology ; Life Sciences &amp; Biomedicine ; Neurosciences ; Neurosciences &amp; Neurology ; Science &amp; Technology</subject><ispartof>Pain (Amsterdam), 2021-04, Vol.162 (4), p.1038-1046</ispartof><rights>Wolters Kluwer</rights><rights>Copyright © 2020 International Association for the Study of Pain.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000656633100006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</citedby><cites>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</cites><orcidid>0000-0003-3411-632X ; 0000-0001-6446-8719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouhassira, Didier</creatorcontrib><creatorcontrib>Branders, Samuel</creatorcontrib><creatorcontrib>Attal, Nadine</creatorcontrib><creatorcontrib>Fernandes, Ana Mercia</creatorcontrib><creatorcontrib>Demolle, Dominique</creatorcontrib><creatorcontrib>Barbour, Julio</creatorcontrib><creatorcontrib>Ciampi de Andrade, Daniel</creatorcontrib><creatorcontrib>Pereira, Alvaro</creatorcontrib><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><title>Pain (Amsterdam)</title><addtitle>PAIN</addtitle><addtitle>Pain</addtitle><description>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</description><subject>Anesthesiology</subject><subject>Clinical Neurology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Science &amp; Technology</subject><issn>0304-3959</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkFGP1CAUhYnRuLOrf0F5NDEdKVBafDMTXTfZqMnqM6H01nakpQKdyfx7qR0nxid5AC5859ybg9DLnGxzIss3--2k-3FL_lo0Z-QR2uRVSTMhKHuMNoQRnjFZyCt0HcJ-gSiVT9EVYzkTsqIbdHqIXse-7U3a3Yhdi6d0gzEGXOsADU6PsQP8CWbv0lfXG_wl9cYPp2GKbsB34yHRzp_e4gYOYN00pBrrscEHbfvm4qvxCEes7Xfn-9gNz9CTVtsAz8_nDfr24f3X3cfs_vPt3e7dfWY45SKjBgpW8lw2Dec0p4ZLInmjaWHqWlJTUsqEMKbW1BjZMlrVkpVMS1NLbljFbtCr1Xfy7ucMIaqhDwas1SO4OSjKi5JKIUqR0HJFjXcheGjV5PtB-5PKiVpyV3u15K7-zT0pX5ybzPUAzUX3J-gEvF6BI9SuDSYlbOCCJRtRCJHoxXEZpPp_etfH3xnv3DzGJOVnqbMRfPhh5yN41YG2sVOrvUyxprkJT1W2Pv0C6g-xNA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bouhassira, Didier</creator><creator>Branders, Samuel</creator><creator>Attal, Nadine</creator><creator>Fernandes, Ana Mercia</creator><creator>Demolle, Dominique</creator><creator>Barbour, Julio</creator><creator>Ciampi de Andrade, Daniel</creator><creator>Pereira, Alvaro</creator><general>Wolters Kluwer</general><general>Lippincott Williams &amp; Wilkins</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3411-632X</orcidid><orcidid>https://orcid.org/0000-0001-6446-8719</orcidid></search><sort><creationdate>20210401</creationdate><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><author>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anesthesiology</topic><topic>Clinical Neurology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouhassira, Didier</creatorcontrib><creatorcontrib>Branders, Samuel</creatorcontrib><creatorcontrib>Attal, Nadine</creatorcontrib><creatorcontrib>Fernandes, Ana Mercia</creatorcontrib><creatorcontrib>Demolle, Dominique</creatorcontrib><creatorcontrib>Barbour, Julio</creatorcontrib><creatorcontrib>Ciampi de Andrade, Daniel</creatorcontrib><creatorcontrib>Pereira, Alvaro</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouhassira, Didier</au><au>Branders, Samuel</au><au>Attal, Nadine</au><au>Fernandes, Ana Mercia</au><au>Demolle, Dominique</au><au>Barbour, Julio</au><au>Ciampi de Andrade, Daniel</au><au>Pereira, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</atitle><jtitle>Pain (Amsterdam)</jtitle><stitle>PAIN</stitle><addtitle>Pain</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>162</volume><issue>4</issue><spage>1038</spage><epage>1046</epage><pages>1038-1046</pages><issn>0304-3959</issn><eissn>1872-6623</eissn><abstract>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer</pub><pmid>33136982</pmid><doi>10.1097/j.pain.0000000000002130</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3411-632X</orcidid><orcidid>https://orcid.org/0000-0001-6446-8719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3959
ispartof Pain (Amsterdam), 2021-04, Vol.162 (4), p.1038-1046
issn 0304-3959
1872-6623
language eng
recordid cdi_pubmed_primary_33136982
source Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Anesthesiology
Clinical Neurology
Life Sciences & Biomedicine
Neurosciences
Neurosciences & Neurology
Science & Technology
title Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratification%20of%20patients%20based%20on%20the%20Neuropathic%20Pain%20Symptom%20Inventory:%20development%20and%20validation%20of%20a%20new%20algorithm&rft.jtitle=Pain%20(Amsterdam)&rft.au=Bouhassira,%20Didier&rft.date=2021-04-01&rft.volume=162&rft.issue=4&rft.spage=1038&rft.epage=1046&rft.pages=1038-1046&rft.issn=0304-3959&rft.eissn=1872-6623&rft_id=info:doi/10.1097/j.pain.0000000000002130&rft_dat=%3Cproquest_pubme%3E2457296676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457296676&rft_id=info:pmid/33136982&rfr_iscdi=true