Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm
The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We inve...
Gespeichert in:
Veröffentlicht in: | Pain (Amsterdam) 2021-04, Vol.162 (4), p.1038-1046 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1046 |
---|---|
container_issue | 4 |
container_start_page | 1038 |
container_title | Pain (Amsterdam) |
container_volume | 162 |
creator | Bouhassira, Didier Branders, Samuel Attal, Nadine Fernandes, Ana Mercia Demolle, Dominique Barbour, Julio Ciampi de Andrade, Daniel Pereira, Alvaro |
description | The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice. |
doi_str_mv | 10.1097/j.pain.0000000000002130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33136982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457296676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</originalsourceid><addsrcrecordid>eNqNkFGP1CAUhYnRuLOrf0F5NDEdKVBafDMTXTfZqMnqM6H01nakpQKdyfx7qR0nxid5AC5859ybg9DLnGxzIss3--2k-3FL_lo0Z-QR2uRVSTMhKHuMNoQRnjFZyCt0HcJ-gSiVT9EVYzkTsqIbdHqIXse-7U3a3Yhdi6d0gzEGXOsADU6PsQP8CWbv0lfXG_wl9cYPp2GKbsB34yHRzp_e4gYOYN00pBrrscEHbfvm4qvxCEes7Xfn-9gNz9CTVtsAz8_nDfr24f3X3cfs_vPt3e7dfWY45SKjBgpW8lw2Dec0p4ZLInmjaWHqWlJTUsqEMKbW1BjZMlrVkpVMS1NLbljFbtCr1Xfy7ucMIaqhDwas1SO4OSjKi5JKIUqR0HJFjXcheGjV5PtB-5PKiVpyV3u15K7-zT0pX5ybzPUAzUX3J-gEvF6BI9SuDSYlbOCCJRtRCJHoxXEZpPp_etfH3xnv3DzGJOVnqbMRfPhh5yN41YG2sVOrvUyxprkJT1W2Pv0C6g-xNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457296676</pqid></control><display><type>article</type><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><source>Journals@Ovid Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</creator><creatorcontrib>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</creatorcontrib><description>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</description><identifier>ISSN: 0304-3959</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1097/j.pain.0000000000002130</identifier><identifier>PMID: 33136982</identifier><language>eng</language><publisher>PHILADELPHIA: Wolters Kluwer</publisher><subject>Anesthesiology ; Clinical Neurology ; Life Sciences & Biomedicine ; Neurosciences ; Neurosciences & Neurology ; Science & Technology</subject><ispartof>Pain (Amsterdam), 2021-04, Vol.162 (4), p.1038-1046</ispartof><rights>Wolters Kluwer</rights><rights>Copyright © 2020 International Association for the Study of Pain.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000656633100006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</citedby><cites>FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</cites><orcidid>0000-0003-3411-632X ; 0000-0001-6446-8719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouhassira, Didier</creatorcontrib><creatorcontrib>Branders, Samuel</creatorcontrib><creatorcontrib>Attal, Nadine</creatorcontrib><creatorcontrib>Fernandes, Ana Mercia</creatorcontrib><creatorcontrib>Demolle, Dominique</creatorcontrib><creatorcontrib>Barbour, Julio</creatorcontrib><creatorcontrib>Ciampi de Andrade, Daniel</creatorcontrib><creatorcontrib>Pereira, Alvaro</creatorcontrib><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><title>Pain (Amsterdam)</title><addtitle>PAIN</addtitle><addtitle>Pain</addtitle><description>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</description><subject>Anesthesiology</subject><subject>Clinical Neurology</subject><subject>Life Sciences & Biomedicine</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Science & Technology</subject><issn>0304-3959</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkFGP1CAUhYnRuLOrf0F5NDEdKVBafDMTXTfZqMnqM6H01nakpQKdyfx7qR0nxid5AC5859ybg9DLnGxzIss3--2k-3FL_lo0Z-QR2uRVSTMhKHuMNoQRnjFZyCt0HcJ-gSiVT9EVYzkTsqIbdHqIXse-7U3a3Yhdi6d0gzEGXOsADU6PsQP8CWbv0lfXG_wl9cYPp2GKbsB34yHRzp_e4gYOYN00pBrrscEHbfvm4qvxCEes7Xfn-9gNz9CTVtsAz8_nDfr24f3X3cfs_vPt3e7dfWY45SKjBgpW8lw2Dec0p4ZLInmjaWHqWlJTUsqEMKbW1BjZMlrVkpVMS1NLbljFbtCr1Xfy7ucMIaqhDwas1SO4OSjKi5JKIUqR0HJFjXcheGjV5PtB-5PKiVpyV3u15K7-zT0pX5ybzPUAzUX3J-gEvF6BI9SuDSYlbOCCJRtRCJHoxXEZpPp_etfH3xnv3DzGJOVnqbMRfPhh5yN41YG2sVOrvUyxprkJT1W2Pv0C6g-xNA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bouhassira, Didier</creator><creator>Branders, Samuel</creator><creator>Attal, Nadine</creator><creator>Fernandes, Ana Mercia</creator><creator>Demolle, Dominique</creator><creator>Barbour, Julio</creator><creator>Ciampi de Andrade, Daniel</creator><creator>Pereira, Alvaro</creator><general>Wolters Kluwer</general><general>Lippincott Williams & Wilkins</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3411-632X</orcidid><orcidid>https://orcid.org/0000-0001-6446-8719</orcidid></search><sort><creationdate>20210401</creationdate><title>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</title><author>Bouhassira, Didier ; Branders, Samuel ; Attal, Nadine ; Fernandes, Ana Mercia ; Demolle, Dominique ; Barbour, Julio ; Ciampi de Andrade, Daniel ; Pereira, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-2ce537419dd44212c49094da25cbb92c722366ccba2cc9f328b9373a9cb94c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anesthesiology</topic><topic>Clinical Neurology</topic><topic>Life Sciences & Biomedicine</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouhassira, Didier</creatorcontrib><creatorcontrib>Branders, Samuel</creatorcontrib><creatorcontrib>Attal, Nadine</creatorcontrib><creatorcontrib>Fernandes, Ana Mercia</creatorcontrib><creatorcontrib>Demolle, Dominique</creatorcontrib><creatorcontrib>Barbour, Julio</creatorcontrib><creatorcontrib>Ciampi de Andrade, Daniel</creatorcontrib><creatorcontrib>Pereira, Alvaro</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouhassira, Didier</au><au>Branders, Samuel</au><au>Attal, Nadine</au><au>Fernandes, Ana Mercia</au><au>Demolle, Dominique</au><au>Barbour, Julio</au><au>Ciampi de Andrade, Daniel</au><au>Pereira, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm</atitle><jtitle>Pain (Amsterdam)</jtitle><stitle>PAIN</stitle><addtitle>Pain</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>162</volume><issue>4</issue><spage>1038</spage><epage>1046</epage><pages>1038-1046</pages><issn>0304-3959</issn><eissn>1872-6623</eissn><abstract>The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (ie, specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of 3 clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2), or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these 3 clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of 2 previous controlled trials of the effects of subcutaneous injections of botulinum toxin A. Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of botulinum toxin A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.</abstract><cop>PHILADELPHIA</cop><pub>Wolters Kluwer</pub><pmid>33136982</pmid><doi>10.1097/j.pain.0000000000002130</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3411-632X</orcidid><orcidid>https://orcid.org/0000-0001-6446-8719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3959 |
ispartof | Pain (Amsterdam), 2021-04, Vol.162 (4), p.1038-1046 |
issn | 0304-3959 1872-6623 |
language | eng |
recordid | cdi_pubmed_primary_33136982 |
source | Journals@Ovid Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Anesthesiology Clinical Neurology Life Sciences & Biomedicine Neurosciences Neurosciences & Neurology Science & Technology |
title | Stratification of patients based on the Neuropathic Pain Symptom Inventory: development and validation of a new algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratification%20of%20patients%20based%20on%20the%20Neuropathic%20Pain%20Symptom%20Inventory:%20development%20and%20validation%20of%20a%20new%20algorithm&rft.jtitle=Pain%20(Amsterdam)&rft.au=Bouhassira,%20Didier&rft.date=2021-04-01&rft.volume=162&rft.issue=4&rft.spage=1038&rft.epage=1046&rft.pages=1038-1046&rft.issn=0304-3959&rft.eissn=1872-6623&rft_id=info:doi/10.1097/j.pain.0000000000002130&rft_dat=%3Cproquest_pubme%3E2457296676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457296676&rft_id=info:pmid/33136982&rfr_iscdi=true |