Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images
Image registration of lung dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging because the rapid changes in intensity lead to non-realistic deformations of intensity-based registration methods. To address this problem, we propose a novel landmark-based registration framewor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-02, Vol.40 (2), p.673-687 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | 2 |
container_start_page | 673 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Cai, Naxin Chen, Houjin Li, Yanfeng Peng, Yahui Li, Jiaxin |
description | Image registration of lung dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging because the rapid changes in intensity lead to non-realistic deformations of intensity-based registration methods. To address this problem, we propose a novel landmark-based registration framework by incorporating landmark information into a group-wise registration. Robust principal component analysis is used to separate motion from intensity changes caused by a contrast agent. Landmark pairs are detected on the resulting motion components and then incorporated into an intensity-based registration through a constraint term. To reduce the negative effect of inaccurate landmark pairs on registration, an adaptive weighting landmark constraint is proposed. The method for calculating landmark weights is based on an assumption that the displacement of a good matched landmark is consistent with those of its neighbors. The proposed method was tested on 20 clinical lung DCE-MRI image series. Both visual inspection and quantitative assessment are used for the evaluation. Experimental results show that the proposed method effectively reduces the non-realistic deformations in registration and improves the registration performance compared with several state-of-the-art registration methods. |
doi_str_mv | 10.1109/TMI.2020.3035292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33136541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9246587</ieee_id><sourcerecordid>2457275973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-3e8afdd965ca94cbec114c859226424df97b0e9eeefd1674fbea5fa6149acd213</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUECXryk7neyR621BlqUUqm3sM1O4tY2qdlE8N-7pbUHYWAO87zDzIPQJcF9QrC6m02SPsUU9xlmgip6hLpEiDikgr8foy6mURxiLGkHnTm3xJhwgdUp6jBGmBScdNHrvdGbxn5DMAdbfDS2LIKxLs1a15_hg3ZgglFdtZtwbh0EUyisa2rd2KoMfI1bjz8OhuFkmgTJWhfgztFJrlcOLva9h96ehrPBczh-GSWD-3GYMR41IYNY58YoKTKteLaAjBCexUJRKjnlJlfRAoMCgNwQGfF8AVrkWhKudGYoYT10u9u7qauvFlyTrq3LYLXSJVStSykXEY2EiphHb_6hy6qtS3-dp2IpFBEKewrvqKyunKshTze19Rp-UoLTre3U2063ttO9bR-53i9uF2swh8CfXg9c7QDrHzmMFeVSxBH7BROMggQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486591590</pqid></control><display><type>article</type><title>Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Li, Jiaxin</creator><creatorcontrib>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Li, Jiaxin</creatorcontrib><description>Image registration of lung dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging because the rapid changes in intensity lead to non-realistic deformations of intensity-based registration methods. To address this problem, we propose a novel landmark-based registration framework by incorporating landmark information into a group-wise registration. Robust principal component analysis is used to separate motion from intensity changes caused by a contrast agent. Landmark pairs are detected on the resulting motion components and then incorporated into an intensity-based registration through a constraint term. To reduce the negative effect of inaccurate landmark pairs on registration, an adaptive weighting landmark constraint is proposed. The method for calculating landmark weights is based on an assumption that the displacement of a good matched landmark is consistent with those of its neighbors. The proposed method was tested on 20 clinical lung DCE-MRI image series. Both visual inspection and quantitative assessment are used for the evaluation. Experimental results show that the proposed method effectively reduces the non-realistic deformations in registration and improves the registration performance compared with several state-of-the-art registration methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3035292</identifier><identifier>PMID: 33136541</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>adaptive landmark constraints ; Contrast agents ; Deformation effects ; Image contrast ; Image enhancement ; Image registration ; Inspection ; Lung ; lung DCE-MRI ; Lungs ; Magnetic resonance imaging ; Medical image registration ; Motion artifacts ; Principal component analysis ; Principal components analysis ; Registration ; robust principal component analysis ; Splines (mathematics) ; Strain ; Time series analysis ; Weighting</subject><ispartof>IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.673-687</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-3e8afdd965ca94cbec114c859226424df97b0e9eeefd1674fbea5fa6149acd213</citedby><cites>FETCH-LOGICAL-c347t-3e8afdd965ca94cbec114c859226424df97b0e9eeefd1674fbea5fa6149acd213</cites><orcidid>0000-0002-6027-4500 ; 0000-0002-8441-7721 ; 0000-0002-9247-8495 ; 0000-0002-2520-1170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9246587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9246587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><title>Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Image registration of lung dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging because the rapid changes in intensity lead to non-realistic deformations of intensity-based registration methods. To address this problem, we propose a novel landmark-based registration framework by incorporating landmark information into a group-wise registration. Robust principal component analysis is used to separate motion from intensity changes caused by a contrast agent. Landmark pairs are detected on the resulting motion components and then incorporated into an intensity-based registration through a constraint term. To reduce the negative effect of inaccurate landmark pairs on registration, an adaptive weighting landmark constraint is proposed. The method for calculating landmark weights is based on an assumption that the displacement of a good matched landmark is consistent with those of its neighbors. The proposed method was tested on 20 clinical lung DCE-MRI image series. Both visual inspection and quantitative assessment are used for the evaluation. Experimental results show that the proposed method effectively reduces the non-realistic deformations in registration and improves the registration performance compared with several state-of-the-art registration methods.</description><subject>adaptive landmark constraints</subject><subject>Contrast agents</subject><subject>Deformation effects</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image registration</subject><subject>Inspection</subject><subject>Lung</subject><subject>lung DCE-MRI</subject><subject>Lungs</subject><subject>Magnetic resonance imaging</subject><subject>Medical image registration</subject><subject>Motion artifacts</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Registration</subject><subject>robust principal component analysis</subject><subject>Splines (mathematics)</subject><subject>Strain</subject><subject>Time series analysis</subject><subject>Weighting</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3eBUECXryk7neyR621BlqUUqm3sM1O4tY2qdlE8N-7pbUHYWAO87zDzIPQJcF9QrC6m02SPsUU9xlmgip6hLpEiDikgr8foy6mURxiLGkHnTm3xJhwgdUp6jBGmBScdNHrvdGbxn5DMAdbfDS2LIKxLs1a15_hg3ZgglFdtZtwbh0EUyisa2rd2KoMfI1bjz8OhuFkmgTJWhfgztFJrlcOLva9h96ehrPBczh-GSWD-3GYMR41IYNY58YoKTKteLaAjBCexUJRKjnlJlfRAoMCgNwQGfF8AVrkWhKudGYoYT10u9u7qauvFlyTrq3LYLXSJVStSykXEY2EiphHb_6hy6qtS3-dp2IpFBEKewrvqKyunKshTze19Rp-UoLTre3U2063ttO9bR-53i9uF2swh8CfXg9c7QDrHzmMFeVSxBH7BROMggQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cai, Naxin</creator><creator>Chen, Houjin</creator><creator>Li, Yanfeng</creator><creator>Peng, Yahui</creator><creator>Li, Jiaxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6027-4500</orcidid><orcidid>https://orcid.org/0000-0002-8441-7721</orcidid><orcidid>https://orcid.org/0000-0002-9247-8495</orcidid><orcidid>https://orcid.org/0000-0002-2520-1170</orcidid></search><sort><creationdate>20210201</creationdate><title>Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images</title><author>Cai, Naxin ; Chen, Houjin ; Li, Yanfeng ; Peng, Yahui ; Li, Jiaxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-3e8afdd965ca94cbec114c859226424df97b0e9eeefd1674fbea5fa6149acd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptive landmark constraints</topic><topic>Contrast agents</topic><topic>Deformation effects</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image registration</topic><topic>Inspection</topic><topic>Lung</topic><topic>lung DCE-MRI</topic><topic>Lungs</topic><topic>Magnetic resonance imaging</topic><topic>Medical image registration</topic><topic>Motion artifacts</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Registration</topic><topic>robust principal component analysis</topic><topic>Splines (mathematics)</topic><topic>Strain</topic><topic>Time series analysis</topic><topic>Weighting</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Naxin</au><au>Chen, Houjin</au><au>Li, Yanfeng</au><au>Peng, Yahui</au><au>Li, Jiaxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>673</spage><epage>687</epage><pages>673-687</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Image registration of lung dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is challenging because the rapid changes in intensity lead to non-realistic deformations of intensity-based registration methods. To address this problem, we propose a novel landmark-based registration framework by incorporating landmark information into a group-wise registration. Robust principal component analysis is used to separate motion from intensity changes caused by a contrast agent. Landmark pairs are detected on the resulting motion components and then incorporated into an intensity-based registration through a constraint term. To reduce the negative effect of inaccurate landmark pairs on registration, an adaptive weighting landmark constraint is proposed. The method for calculating landmark weights is based on an assumption that the displacement of a good matched landmark is consistent with those of its neighbors. The proposed method was tested on 20 clinical lung DCE-MRI image series. Both visual inspection and quantitative assessment are used for the evaluation. Experimental results show that the proposed method effectively reduces the non-realistic deformations in registration and improves the registration performance compared with several state-of-the-art registration methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33136541</pmid><doi>10.1109/TMI.2020.3035292</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6027-4500</orcidid><orcidid>https://orcid.org/0000-0002-8441-7721</orcidid><orcidid>https://orcid.org/0000-0002-9247-8495</orcidid><orcidid>https://orcid.org/0000-0002-2520-1170</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.673-687 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_33136541 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive landmark constraints Contrast agents Deformation effects Image contrast Image enhancement Image registration Inspection Lung lung DCE-MRI Lungs Magnetic resonance imaging Medical image registration Motion artifacts Principal component analysis Principal components analysis Registration robust principal component analysis Splines (mathematics) Strain Time series analysis Weighting |
title | Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Weighting%20Landmark-Based%20Group-Wise%20Registration%20on%20Lung%20DCE-MRI%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Cai,%20Naxin&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=673&rft.epage=687&rft.pages=673-687&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3035292&rft_dat=%3Cproquest_RIE%3E2457275973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486591590&rft_id=info:pmid/33136541&rft_ieee_id=9246587&rfr_iscdi=true |