Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients

Purpose: GALAD is a statistical model for estimating the likelihood of having hepatocellular carcinoma (HCC) based on gender, age, AFP, AFP-L3, and PIVKA-II. We aimed to assess its performance and build new models in China, where hepatitis B virus (HBV) is the leading etiology of HCC. Patients and M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hepatocellular carcinoma 2020-01, Vol.7, p.219-232
Hauptverfasser: Liu, Miaoxia, Wu, Ruihong, Liu, Xu, Xu, Hongqin, Chi, Xiumei, Wang, Xiaomei, Zhan, Mengru, Wang, Bao, Peng, Fei, Gao, Xiuzhu, Shi, Ying, Wen, Xiaoyu, Ji, Yali, Jin, Qinglong, Niu, Junqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue
container_start_page 219
container_title Journal of hepatocellular carcinoma
container_volume 7
creator Liu, Miaoxia
Wu, Ruihong
Liu, Xu
Xu, Hongqin
Chi, Xiumei
Wang, Xiaomei
Zhan, Mengru
Wang, Bao
Peng, Fei
Gao, Xiuzhu
Shi, Ying
Wen, Xiaoyu
Ji, Yali
Jin, Qinglong
Niu, Junqi
description Purpose: GALAD is a statistical model for estimating the likelihood of having hepatocellular carcinoma (HCC) based on gender, age, AFP, AFP-L3, and PIVKA-II. We aimed to assess its performance and build new models in China, where hepatitis B virus (HBV) is the leading etiology of HCC. Patients and Methods: We built the GALAD-C model with the same five variables in GALAD, and the GAAP model with gender, age, AFP, and PIVKA-II, using logistic regression based on 242 patients with HCC and 283 patients with chronic liver disease (CLD). We also collected 50 patients with other malignant liver tumors (OMTs) and 50 healthy controls (HCs). A test dataset (169 patients with HCC and 139 with CLD) was used to test the performance of GAAP. Results: The GALAD-C and GAAP models achieved comparable performance (area under the receiver operating characteristic curve [AUC], 0.922 vs 0.914), and both were superior to GALAD, PIVKA-II, AFP, and AFP-L3% (AUCs, 0.891, 0.869, 0.750, and 0.711) for discrimination of HCC from CLD for the entire dataset. The AUCs of the GALAD, GALAD-C and GAAP models were excellent for the hepatitis C virus (HCV) subgroup (0.939, 0.958 and 0.954), and for discrimination HCC from HCs (0.988, 0.982, and 0.979), but were relatively lower for the HBV subgroup (0.855, 0.904, and 0.894), and for HCC within Milan Criteria (0.810, 0.841, and 0.840). They were not superior to AFP (0.873) for discrimination of HCC from OMT (0.873, 0.809, and 0.823). GAAP achieved an AUC of 0.922 in the test dataset. Conclusion: GALAD was excellent for discrimination of HCC from CLD in the HCV subgroup of a cohort of Chinese patients. The GAAP and GALAD-C models achieved better performance compared with GALAD. These three models exhibited better performance in patients with an HCV etiology than those with HBV.
doi_str_mv 10.2147/JHC.S271790
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33123501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6253bd3315a74a16bb961e7aacbacd10</doaj_id><sourcerecordid>2456410405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-9a4a55cf7d72d4693b03501b769cf81096911027de72445ffcbd5a3f71aab8203</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEolXpiTuyxAUJbbETO04uSFHa7hYtohIfV2v8kV2vsvZiJ6CKfx6nuywtJ05JPL88v5l5WfaS4IucUP7uw6K9-Jxzwmv8JDvNc1bMWF3WTx-8n2TnMW4wxiR9YV49z06KguQFw-Q0-_UNeqthsN4h36FhbdC8WTaX6KPXpkfgNLqKA8jexvXWuGGC5k1ze6h3PqBLCyvno41TbWF2MHhl-n7sIaAWgrLObwFZh9q1dSYadJuuS1LxRfasgz6a88PzLPt6ffWlXcyWn-Y3bbOcKUr5MKuBAmOq45rnmpZ1IfHkXfKyVl1FcGqREJxzbXhOKes6JTWDouMEQFY5Ls6ym72u9rARu2C3EO6EByvuD3xYCQiDVb0RZRqa1Gk8DDgFUkpZl8RwACVBaTJpvd9r7Ua5NVqlPgL0j0QfV5xdi5X_ITirCWY0Cbw5CAT_fTRxEFsbp3mBM36MIqespARTzBL6-h9048fg0qgSVaa-p20m6u2eUsHHGEx3NEOwmDIiUkbEISOJfvXQ_5H9k4gEVHvgp5G-iyptSpkjllLEKlZN_qZAtXa4j07rRzf8dfI_vxa_AdMr1oM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460966078</pqid></control><display><type>article</type><title>Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients</title><source>DOAJ Directory of Open Access Journals</source><source>Dove Press Free</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via Taylor &amp; Francis (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Miaoxia ; Wu, Ruihong ; Liu, Xu ; Xu, Hongqin ; Chi, Xiumei ; Wang, Xiaomei ; Zhan, Mengru ; Wang, Bao ; Peng, Fei ; Gao, Xiuzhu ; Shi, Ying ; Wen, Xiaoyu ; Ji, Yali ; Jin, Qinglong ; Niu, Junqi</creator><creatorcontrib>Liu, Miaoxia ; Wu, Ruihong ; Liu, Xu ; Xu, Hongqin ; Chi, Xiumei ; Wang, Xiaomei ; Zhan, Mengru ; Wang, Bao ; Peng, Fei ; Gao, Xiuzhu ; Shi, Ying ; Wen, Xiaoyu ; Ji, Yali ; Jin, Qinglong ; Niu, Junqi</creatorcontrib><description>Purpose: GALAD is a statistical model for estimating the likelihood of having hepatocellular carcinoma (HCC) based on gender, age, AFP, AFP-L3, and PIVKA-II. We aimed to assess its performance and build new models in China, where hepatitis B virus (HBV) is the leading etiology of HCC. Patients and Methods: We built the GALAD-C model with the same five variables in GALAD, and the GAAP model with gender, age, AFP, and PIVKA-II, using logistic regression based on 242 patients with HCC and 283 patients with chronic liver disease (CLD). We also collected 50 patients with other malignant liver tumors (OMTs) and 50 healthy controls (HCs). A test dataset (169 patients with HCC and 139 with CLD) was used to test the performance of GAAP. Results: The GALAD-C and GAAP models achieved comparable performance (area under the receiver operating characteristic curve [AUC], 0.922 vs 0.914), and both were superior to GALAD, PIVKA-II, AFP, and AFP-L3% (AUCs, 0.891, 0.869, 0.750, and 0.711) for discrimination of HCC from CLD for the entire dataset. The AUCs of the GALAD, GALAD-C and GAAP models were excellent for the hepatitis C virus (HCV) subgroup (0.939, 0.958 and 0.954), and for discrimination HCC from HCs (0.988, 0.982, and 0.979), but were relatively lower for the HBV subgroup (0.855, 0.904, and 0.894), and for HCC within Milan Criteria (0.810, 0.841, and 0.840). They were not superior to AFP (0.873) for discrimination of HCC from OMT (0.873, 0.809, and 0.823). GAAP achieved an AUC of 0.922 in the test dataset. Conclusion: GALAD was excellent for discrimination of HCC from CLD in the HCV subgroup of a cohort of Chinese patients. The GAAP and GALAD-C models achieved better performance compared with GALAD. These three models exhibited better performance in patients with an HCV etiology than those with HBV.</description><identifier>ISSN: 2253-5969</identifier><identifier>EISSN: 2253-5969</identifier><identifier>DOI: 10.2147/JHC.S271790</identifier><identifier>PMID: 33123501</identifier><language>eng</language><publisher>ALBANY: Dove Medical Press Ltd</publisher><subject>alpha-fetoprotein ; Biomarkers ; Datasets ; Etiology ; galad ; Gender ; Hepatitis B ; Hepatitis C ; Hepatocellular carcinoma ; Hepatology ; Immunoassay ; Infections ; Life Sciences &amp; Biomedicine ; Liver cancer ; Liver cirrhosis ; Liver diseases ; Magnetic resonance imaging ; Mathematical models ; Metastasis ; Oncology ; Original Research ; pivka-ii ; Science &amp; Technology ; Software ; Surveillance ; Tumors ; Ultrasonic imaging</subject><ispartof>Journal of hepatocellular carcinoma, 2020-01, Vol.7, p.219-232</ispartof><rights>2020 Liu et al.</rights><rights>2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Liu et al. 2020 Liu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000585810400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c447t-9a4a55cf7d72d4693b03501b769cf81096911027de72445ffcbd5a3f71aab8203</citedby><cites>FETCH-LOGICAL-c447t-9a4a55cf7d72d4693b03501b769cf81096911027de72445ffcbd5a3f71aab8203</cites><orcidid>0000-0002-5446-9854 ; 0000-0001-7585-0059 ; 0000-0002-2419-6859 ; 0000-0002-6291-8496 ; 0000-0001-6310-1456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591054/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591054/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,3863,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33123501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Miaoxia</creatorcontrib><creatorcontrib>Wu, Ruihong</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Hongqin</creatorcontrib><creatorcontrib>Chi, Xiumei</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Zhan, Mengru</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Gao, Xiuzhu</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Wen, Xiaoyu</creatorcontrib><creatorcontrib>Ji, Yali</creatorcontrib><creatorcontrib>Jin, Qinglong</creatorcontrib><creatorcontrib>Niu, Junqi</creatorcontrib><title>Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients</title><title>Journal of hepatocellular carcinoma</title><addtitle>J HEPATOCELL CARCINO</addtitle><addtitle>J Hepatocell Carcinoma</addtitle><description>Purpose: GALAD is a statistical model for estimating the likelihood of having hepatocellular carcinoma (HCC) based on gender, age, AFP, AFP-L3, and PIVKA-II. We aimed to assess its performance and build new models in China, where hepatitis B virus (HBV) is the leading etiology of HCC. Patients and Methods: We built the GALAD-C model with the same five variables in GALAD, and the GAAP model with gender, age, AFP, and PIVKA-II, using logistic regression based on 242 patients with HCC and 283 patients with chronic liver disease (CLD). We also collected 50 patients with other malignant liver tumors (OMTs) and 50 healthy controls (HCs). A test dataset (169 patients with HCC and 139 with CLD) was used to test the performance of GAAP. Results: The GALAD-C and GAAP models achieved comparable performance (area under the receiver operating characteristic curve [AUC], 0.922 vs 0.914), and both were superior to GALAD, PIVKA-II, AFP, and AFP-L3% (AUCs, 0.891, 0.869, 0.750, and 0.711) for discrimination of HCC from CLD for the entire dataset. The AUCs of the GALAD, GALAD-C and GAAP models were excellent for the hepatitis C virus (HCV) subgroup (0.939, 0.958 and 0.954), and for discrimination HCC from HCs (0.988, 0.982, and 0.979), but were relatively lower for the HBV subgroup (0.855, 0.904, and 0.894), and for HCC within Milan Criteria (0.810, 0.841, and 0.840). They were not superior to AFP (0.873) for discrimination of HCC from OMT (0.873, 0.809, and 0.823). GAAP achieved an AUC of 0.922 in the test dataset. Conclusion: GALAD was excellent for discrimination of HCC from CLD in the HCV subgroup of a cohort of Chinese patients. The GAAP and GALAD-C models achieved better performance compared with GALAD. These three models exhibited better performance in patients with an HCV etiology than those with HBV.</description><subject>alpha-fetoprotein</subject><subject>Biomarkers</subject><subject>Datasets</subject><subject>Etiology</subject><subject>galad</subject><subject>Gender</subject><subject>Hepatitis B</subject><subject>Hepatitis C</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatology</subject><subject>Immunoassay</subject><subject>Infections</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Metastasis</subject><subject>Oncology</subject><subject>Original Research</subject><subject>pivka-ii</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>Surveillance</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><issn>2253-5969</issn><issn>2253-5969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1v1DAQxSMEolXpiTuyxAUJbbETO04uSFHa7hYtohIfV2v8kV2vsvZiJ6CKfx6nuywtJ05JPL88v5l5WfaS4IucUP7uw6K9-Jxzwmv8JDvNc1bMWF3WTx-8n2TnMW4wxiR9YV49z06KguQFw-Q0-_UNeqthsN4h36FhbdC8WTaX6KPXpkfgNLqKA8jexvXWuGGC5k1ze6h3PqBLCyvno41TbWF2MHhl-n7sIaAWgrLObwFZh9q1dSYadJuuS1LxRfasgz6a88PzLPt6ffWlXcyWn-Y3bbOcKUr5MKuBAmOq45rnmpZ1IfHkXfKyVl1FcGqREJxzbXhOKes6JTWDouMEQFY5Ls6ym72u9rARu2C3EO6EByvuD3xYCQiDVb0RZRqa1Gk8DDgFUkpZl8RwACVBaTJpvd9r7Ua5NVqlPgL0j0QfV5xdi5X_ITirCWY0Cbw5CAT_fTRxEFsbp3mBM36MIqespARTzBL6-h9048fg0qgSVaa-p20m6u2eUsHHGEx3NEOwmDIiUkbEISOJfvXQ_5H9k4gEVHvgp5G-iyptSpkjllLEKlZN_qZAtXa4j07rRzf8dfI_vxa_AdMr1oM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Liu, Miaoxia</creator><creator>Wu, Ruihong</creator><creator>Liu, Xu</creator><creator>Xu, Hongqin</creator><creator>Chi, Xiumei</creator><creator>Wang, Xiaomei</creator><creator>Zhan, Mengru</creator><creator>Wang, Bao</creator><creator>Peng, Fei</creator><creator>Gao, Xiuzhu</creator><creator>Shi, Ying</creator><creator>Wen, Xiaoyu</creator><creator>Ji, Yali</creator><creator>Jin, Qinglong</creator><creator>Niu, Junqi</creator><general>Dove Medical Press Ltd</general><general>Taylor &amp; Francis Ltd</general><general>Dove</general><general>Dove Medical Press</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5446-9854</orcidid><orcidid>https://orcid.org/0000-0001-7585-0059</orcidid><orcidid>https://orcid.org/0000-0002-2419-6859</orcidid><orcidid>https://orcid.org/0000-0002-6291-8496</orcidid><orcidid>https://orcid.org/0000-0001-6310-1456</orcidid></search><sort><creationdate>20200101</creationdate><title>Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients</title><author>Liu, Miaoxia ; Wu, Ruihong ; Liu, Xu ; Xu, Hongqin ; Chi, Xiumei ; Wang, Xiaomei ; Zhan, Mengru ; Wang, Bao ; Peng, Fei ; Gao, Xiuzhu ; Shi, Ying ; Wen, Xiaoyu ; Ji, Yali ; Jin, Qinglong ; Niu, Junqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-9a4a55cf7d72d4693b03501b769cf81096911027de72445ffcbd5a3f71aab8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alpha-fetoprotein</topic><topic>Biomarkers</topic><topic>Datasets</topic><topic>Etiology</topic><topic>galad</topic><topic>Gender</topic><topic>Hepatitis B</topic><topic>Hepatitis C</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatology</topic><topic>Immunoassay</topic><topic>Infections</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Metastasis</topic><topic>Oncology</topic><topic>Original Research</topic><topic>pivka-ii</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>Surveillance</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Miaoxia</creatorcontrib><creatorcontrib>Wu, Ruihong</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Hongqin</creatorcontrib><creatorcontrib>Chi, Xiumei</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Zhan, Mengru</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Gao, Xiuzhu</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Wen, Xiaoyu</creatorcontrib><creatorcontrib>Ji, Yali</creatorcontrib><creatorcontrib>Jin, Qinglong</creatorcontrib><creatorcontrib>Niu, Junqi</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of hepatocellular carcinoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Miaoxia</au><au>Wu, Ruihong</au><au>Liu, Xu</au><au>Xu, Hongqin</au><au>Chi, Xiumei</au><au>Wang, Xiaomei</au><au>Zhan, Mengru</au><au>Wang, Bao</au><au>Peng, Fei</au><au>Gao, Xiuzhu</au><au>Shi, Ying</au><au>Wen, Xiaoyu</au><au>Ji, Yali</au><au>Jin, Qinglong</au><au>Niu, Junqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients</atitle><jtitle>Journal of hepatocellular carcinoma</jtitle><stitle>J HEPATOCELL CARCINO</stitle><addtitle>J Hepatocell Carcinoma</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><spage>219</spage><epage>232</epage><pages>219-232</pages><issn>2253-5969</issn><eissn>2253-5969</eissn><abstract>Purpose: GALAD is a statistical model for estimating the likelihood of having hepatocellular carcinoma (HCC) based on gender, age, AFP, AFP-L3, and PIVKA-II. We aimed to assess its performance and build new models in China, where hepatitis B virus (HBV) is the leading etiology of HCC. Patients and Methods: We built the GALAD-C model with the same five variables in GALAD, and the GAAP model with gender, age, AFP, and PIVKA-II, using logistic regression based on 242 patients with HCC and 283 patients with chronic liver disease (CLD). We also collected 50 patients with other malignant liver tumors (OMTs) and 50 healthy controls (HCs). A test dataset (169 patients with HCC and 139 with CLD) was used to test the performance of GAAP. Results: The GALAD-C and GAAP models achieved comparable performance (area under the receiver operating characteristic curve [AUC], 0.922 vs 0.914), and both were superior to GALAD, PIVKA-II, AFP, and AFP-L3% (AUCs, 0.891, 0.869, 0.750, and 0.711) for discrimination of HCC from CLD for the entire dataset. The AUCs of the GALAD, GALAD-C and GAAP models were excellent for the hepatitis C virus (HCV) subgroup (0.939, 0.958 and 0.954), and for discrimination HCC from HCs (0.988, 0.982, and 0.979), but were relatively lower for the HBV subgroup (0.855, 0.904, and 0.894), and for HCC within Milan Criteria (0.810, 0.841, and 0.840). They were not superior to AFP (0.873) for discrimination of HCC from OMT (0.873, 0.809, and 0.823). GAAP achieved an AUC of 0.922 in the test dataset. Conclusion: GALAD was excellent for discrimination of HCC from CLD in the HCV subgroup of a cohort of Chinese patients. The GAAP and GALAD-C models achieved better performance compared with GALAD. These three models exhibited better performance in patients with an HCV etiology than those with HBV.</abstract><cop>ALBANY</cop><pub>Dove Medical Press Ltd</pub><pmid>33123501</pmid><doi>10.2147/JHC.S271790</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5446-9854</orcidid><orcidid>https://orcid.org/0000-0001-7585-0059</orcidid><orcidid>https://orcid.org/0000-0002-2419-6859</orcidid><orcidid>https://orcid.org/0000-0002-6291-8496</orcidid><orcidid>https://orcid.org/0000-0001-6310-1456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2253-5969
ispartof Journal of hepatocellular carcinoma, 2020-01, Vol.7, p.219-232
issn 2253-5969
2253-5969
language eng
recordid cdi_pubmed_primary_33123501
source DOAJ Directory of Open Access Journals; Dove Press Free; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via Taylor & Francis (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects alpha-fetoprotein
Biomarkers
Datasets
Etiology
galad
Gender
Hepatitis B
Hepatitis C
Hepatocellular carcinoma
Hepatology
Immunoassay
Infections
Life Sciences & Biomedicine
Liver cancer
Liver cirrhosis
Liver diseases
Magnetic resonance imaging
Mathematical models
Metastasis
Oncology
Original Research
pivka-ii
Science & Technology
Software
Surveillance
Tumors
Ultrasonic imaging
title Validation of the GALAD Model and Establishment of GAAP Model for Diagnosis of Hepatocellular Carcinoma in Chinese Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20GALAD%20Model%20and%20Establishment%20of%20GAAP%20Model%20for%20Diagnosis%20of%20Hepatocellular%20Carcinoma%20in%20Chinese%20Patients&rft.jtitle=Journal%20of%20hepatocellular%20carcinoma&rft.au=Liu,%20Miaoxia&rft.date=2020-01-01&rft.volume=7&rft.spage=219&rft.epage=232&rft.pages=219-232&rft.issn=2253-5969&rft.eissn=2253-5969&rft_id=info:doi/10.2147/JHC.S271790&rft_dat=%3Cproquest_pubme%3E2456410405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460966078&rft_id=info:pmid/33123501&rft_doaj_id=oai_doaj_org_article_6253bd3315a74a16bb961e7aacbacd10&rfr_iscdi=true