Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1−xFe2O4 core/shell nanopartic...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-10, Vol.32 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Nanotechnology |
container_volume | 32 |
creator | Fabris, Fernando Lohr, Javier Lima, Enio de Almeida, Adriele Aparecida Troiani, Horacio E Rodríguez, Luis M Vásquez Mansilla, Marcelo Aguirre, Myriam H Goya, Gerardo F Rinaldi, Daniele Ghirri, Alberto Peddis, Davide Fiorani, Dino Zysler, Roberto D De Biasi, Emilio Winkler, Elin L |
description | In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g−1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes. |
doi_str_mv | 10.1088/1361-6528/abc386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33086203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453685991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i211t-378b5f5f8611cfa31ca597163a622806f197283a1606d6ebbd9636f50a9010a63</originalsourceid><addsrcrecordid>eNpVkcGO0zAQhi0EYsvCnRPykQOhHjt2nOOqooC0ohe4cLGcZNy6SuxgJ1L3DRBH3oLn4E14ElJ1AXEaafTN_PPPT8hzYK-Bab0GoaBQkuu1bVqh1QOy-tt6SFasllVRlrq8Ik9yPjIGoDk8JldCMK04Eyvy7aY7znnyYU-nA9IPP39gTxP29mQnHwOd_IA0OrpFsSvXn8NpE-HX1--nLfJdSduYcJ0P2Pc02BBHmybf9pipi4nGcRm2PT2gnegeA6bLSh_oYPcBF5Qe7kZMi3AavH1KHjnbZ3x2X6_Jp-2bj5t3xe3u7fvNzW3hOcBUiEo30kmnFUDrrIDWyroCJaziXDPloK64FhYUU53CpulqJZSTzNYMmFXimry87B1T_DJjnszgc7t4sAHjnA0vpVBa1jUs6It7dG4G7MyYFkfpzvz53wK8ugA-juYY5xSWyw0wc47HnLMw5yzMJZ5_0v_h59cZwY0yTMmKCTN2TvwGRpOPzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453685991</pqid></control><display><type>article</type><title>Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fabris, Fernando ; Lohr, Javier ; Lima, Enio ; de Almeida, Adriele Aparecida ; Troiani, Horacio E ; Rodríguez, Luis M ; Vásquez Mansilla, Marcelo ; Aguirre, Myriam H ; Goya, Gerardo F ; Rinaldi, Daniele ; Ghirri, Alberto ; Peddis, Davide ; Fiorani, Dino ; Zysler, Roberto D ; De Biasi, Emilio ; Winkler, Elin L</creator><creatorcontrib>Fabris, Fernando ; Lohr, Javier ; Lima, Enio ; de Almeida, Adriele Aparecida ; Troiani, Horacio E ; Rodríguez, Luis M ; Vásquez Mansilla, Marcelo ; Aguirre, Myriam H ; Goya, Gerardo F ; Rinaldi, Daniele ; Ghirri, Alberto ; Peddis, Davide ; Fiorani, Dino ; Zysler, Roberto D ; De Biasi, Emilio ; Winkler, Elin L</creatorcontrib><description>In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g−1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc386</identifier><identifier>PMID: 33086203</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>core/shell nanoparticles ; magnetic fluid hyperthermia ; Néel relaxation time</subject><ispartof>Nanotechnology, 2020-10, Vol.32 (6)</ispartof><rights>2020 IOP Publishing Ltd</rights><rights>2020 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1296-4793 ; 0000-0002-9575-7879 ; 0000-0003-0687-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abc386/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33086203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fabris, Fernando</creatorcontrib><creatorcontrib>Lohr, Javier</creatorcontrib><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>de Almeida, Adriele Aparecida</creatorcontrib><creatorcontrib>Troiani, Horacio E</creatorcontrib><creatorcontrib>Rodríguez, Luis M</creatorcontrib><creatorcontrib>Vásquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Aguirre, Myriam H</creatorcontrib><creatorcontrib>Goya, Gerardo F</creatorcontrib><creatorcontrib>Rinaldi, Daniele</creatorcontrib><creatorcontrib>Ghirri, Alberto</creatorcontrib><creatorcontrib>Peddis, Davide</creatorcontrib><creatorcontrib>Fiorani, Dino</creatorcontrib><creatorcontrib>Zysler, Roberto D</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Winkler, Elin L</creatorcontrib><title>Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g−1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.</description><subject>core/shell nanoparticles</subject><subject>magnetic fluid hyperthermia</subject><subject>Néel relaxation time</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkcGO0zAQhi0EYsvCnRPykQOhHjt2nOOqooC0ohe4cLGcZNy6SuxgJ1L3DRBH3oLn4E14ElJ1AXEaafTN_PPPT8hzYK-Bab0GoaBQkuu1bVqh1QOy-tt6SFasllVRlrq8Ik9yPjIGoDk8JldCMK04Eyvy7aY7znnyYU-nA9IPP39gTxP29mQnHwOd_IA0OrpFsSvXn8NpE-HX1--nLfJdSduYcJ0P2Pc02BBHmybf9pipi4nGcRm2PT2gnegeA6bLSh_oYPcBF5Qe7kZMi3AavH1KHjnbZ3x2X6_Jp-2bj5t3xe3u7fvNzW3hOcBUiEo30kmnFUDrrIDWyroCJaziXDPloK64FhYUU53CpulqJZSTzNYMmFXimry87B1T_DJjnszgc7t4sAHjnA0vpVBa1jUs6It7dG4G7MyYFkfpzvz53wK8ugA-juYY5xSWyw0wc47HnLMw5yzMJZ5_0v_h59cZwY0yTMmKCTN2TvwGRpOPzw</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Fabris, Fernando</creator><creator>Lohr, Javier</creator><creator>Lima, Enio</creator><creator>de Almeida, Adriele Aparecida</creator><creator>Troiani, Horacio E</creator><creator>Rodríguez, Luis M</creator><creator>Vásquez Mansilla, Marcelo</creator><creator>Aguirre, Myriam H</creator><creator>Goya, Gerardo F</creator><creator>Rinaldi, Daniele</creator><creator>Ghirri, Alberto</creator><creator>Peddis, Davide</creator><creator>Fiorani, Dino</creator><creator>Zysler, Roberto D</creator><creator>De Biasi, Emilio</creator><creator>Winkler, Elin L</creator><general>IOP Publishing</general><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1296-4793</orcidid><orcidid>https://orcid.org/0000-0002-9575-7879</orcidid><orcidid>https://orcid.org/0000-0003-0687-5898</orcidid></search><sort><creationdate>20201021</creationdate><title>Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia</title><author>Fabris, Fernando ; Lohr, Javier ; Lima, Enio ; de Almeida, Adriele Aparecida ; Troiani, Horacio E ; Rodríguez, Luis M ; Vásquez Mansilla, Marcelo ; Aguirre, Myriam H ; Goya, Gerardo F ; Rinaldi, Daniele ; Ghirri, Alberto ; Peddis, Davide ; Fiorani, Dino ; Zysler, Roberto D ; De Biasi, Emilio ; Winkler, Elin L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i211t-378b5f5f8611cfa31ca597163a622806f197283a1606d6ebbd9636f50a9010a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>core/shell nanoparticles</topic><topic>magnetic fluid hyperthermia</topic><topic>Néel relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabris, Fernando</creatorcontrib><creatorcontrib>Lohr, Javier</creatorcontrib><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>de Almeida, Adriele Aparecida</creatorcontrib><creatorcontrib>Troiani, Horacio E</creatorcontrib><creatorcontrib>Rodríguez, Luis M</creatorcontrib><creatorcontrib>Vásquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Aguirre, Myriam H</creatorcontrib><creatorcontrib>Goya, Gerardo F</creatorcontrib><creatorcontrib>Rinaldi, Daniele</creatorcontrib><creatorcontrib>Ghirri, Alberto</creatorcontrib><creatorcontrib>Peddis, Davide</creatorcontrib><creatorcontrib>Fiorani, Dino</creatorcontrib><creatorcontrib>Zysler, Roberto D</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Winkler, Elin L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabris, Fernando</au><au>Lohr, Javier</au><au>Lima, Enio</au><au>de Almeida, Adriele Aparecida</au><au>Troiani, Horacio E</au><au>Rodríguez, Luis M</au><au>Vásquez Mansilla, Marcelo</au><au>Aguirre, Myriam H</au><au>Goya, Gerardo F</au><au>Rinaldi, Daniele</au><au>Ghirri, Alberto</au><au>Peddis, Davide</au><au>Fiorani, Dino</au><au>Zysler, Roberto D</au><au>De Biasi, Emilio</au><au>Winkler, Elin L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2020-10-21</date><risdate>2020</risdate><volume>32</volume><issue>6</issue><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g−1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33086203</pmid><doi>10.1088/1361-6528/abc386</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1296-4793</orcidid><orcidid>https://orcid.org/0000-0002-9575-7879</orcidid><orcidid>https://orcid.org/0000-0003-0687-5898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2020-10, Vol.32 (6) |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_pubmed_primary_33086203 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | core/shell nanoparticles magnetic fluid hyperthermia Néel relaxation time |
title | Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusting%20the%20N%C3%A9el%20relaxation%20time%20of%20Fe3O4/ZnxCo1%E2%88%92xFe2O4%20core/shell%20nanoparticles%20for%20optimal%20heat%20generation%20in%20magnetic%20hyperthermia&rft.jtitle=Nanotechnology&rft.au=Fabris,%20Fernando&rft.date=2020-10-21&rft.volume=32&rft.issue=6&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc386&rft_dat=%3Cproquest_pubme%3E2453685991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453685991&rft_id=info:pmid/33086203&rfr_iscdi=true |