SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-11, Vol.183 (5), p.1325-1339.e21
Hauptverfasser: Banerjee, Abhik K., Blanco, Mario R., Bruce, Emily A., Honson, Drew D., Chen, Linlin M., Chow, Amy, Bhat, Prashant, Ollikainen, Noah, Quinodoz, Sofia A., Loney, Colin, Thai, Jasmine, Miller, Zachary D., Lin, Aaron E., Schmidt, Madaline M., Stewart, Douglas G., Goldfarb, Daniel, De Lorenzo, Giuditta, Rihn, Suzannah J., Voorhees, Rebecca M., Botten, Jason W., Majumdar, Devdoot, Guttman, Mitchell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339.e21
container_issue 5
container_start_page 1325
container_title Cell
container_volume 183
creator Banerjee, Abhik K.
Blanco, Mario R.
Bruce, Emily A.
Honson, Drew D.
Chen, Linlin M.
Chow, Amy
Bhat, Prashant
Ollikainen, Noah
Quinodoz, Sofia A.
Loney, Colin
Thai, Jasmine
Miller, Zachary D.
Lin, Aaron E.
Schmidt, Madaline M.
Stewart, Douglas G.
Goldfarb, Daniel
De Lorenzo, Giuditta
Rihn, Suzannah J.
Voorhees, Rebecca M.
Botten, Jason W.
Majumdar, Devdoot
Guttman, Mitchell
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses. [Display omitted] •NSP16 binds mRNA recognition domains of U1/U2 snRNAs and disrupts mRNA splicing•NSP1 binds in the mRNA entry channel of the ribosome to disrupt protein translation•NSP8 and NSP9 bind the signal recognition particle and disrupt protein trafficking•These disruptions of protein production suppress the interferon response to infection SARS-CoV-2 proteins directly engage host RNAs to dysregulate essential steps of protein production and suppress the interferon response.
doi_str_mv 10.1016/j.cell.2020.10.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33080218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420313106</els_id><sourcerecordid>2452978102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-f95d678177779d815683357dcdbae968aeb2009cd8f3e5423eff9705737269bb3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kHn3obPNnMsmACGWrtlBQ3OqTEDLJnZp1NhmTTKHf3gxbi740L4F7f-fk5h6EXhO8Jpi0p7u1gXFcU0yXwhrj5glaEdyJuiGCPkUrjDtay1Y0R-hFSjuMseScP0dHjGGJKZEr9GN79nVbb8L3mlbnLsV5yqnaTqMzzt-cVNdR-zTq7II_qbS31ZcYMji_NIbBmV-FqnKotvM0RUipuggpV-cwgE-QXqJngx4TvLq_j9G3jx-uNxf11edPl5uzq9rwpsv10HHbCklEOZ2VhLeSMS6ssb2GrpUaelq-YqwcGPCGMhiGTmAumKBt1_fsGL0_-E5zvwdrwOeoRzVFt9fxTgXt1P8d736qm3CrBG-YlG0xeHtvEMPvGVJWe5eW5WoPYU6KNpx2ZUJMC0oPqIkhpQjDwzMEqyUWtVOLUi2xLLUSSxG9-XfAB8nfHArw7gBAWdOtg6iSceANWBfBZGWDe8z_DxEynpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452978102</pqid></control><display><type>article</type><title>SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Banerjee, Abhik K. ; Blanco, Mario R. ; Bruce, Emily A. ; Honson, Drew D. ; Chen, Linlin M. ; Chow, Amy ; Bhat, Prashant ; Ollikainen, Noah ; Quinodoz, Sofia A. ; Loney, Colin ; Thai, Jasmine ; Miller, Zachary D. ; Lin, Aaron E. ; Schmidt, Madaline M. ; Stewart, Douglas G. ; Goldfarb, Daniel ; De Lorenzo, Giuditta ; Rihn, Suzannah J. ; Voorhees, Rebecca M. ; Botten, Jason W. ; Majumdar, Devdoot ; Guttman, Mitchell</creator><creatorcontrib>Banerjee, Abhik K. ; Blanco, Mario R. ; Bruce, Emily A. ; Honson, Drew D. ; Chen, Linlin M. ; Chow, Amy ; Bhat, Prashant ; Ollikainen, Noah ; Quinodoz, Sofia A. ; Loney, Colin ; Thai, Jasmine ; Miller, Zachary D. ; Lin, Aaron E. ; Schmidt, Madaline M. ; Stewart, Douglas G. ; Goldfarb, Daniel ; De Lorenzo, Giuditta ; Rihn, Suzannah J. ; Voorhees, Rebecca M. ; Botten, Jason W. ; Majumdar, Devdoot ; Guttman, Mitchell</creatorcontrib><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses. [Display omitted] •NSP16 binds mRNA recognition domains of U1/U2 snRNAs and disrupts mRNA splicing•NSP1 binds in the mRNA entry channel of the ribosome to disrupt protein translation•NSP8 and NSP9 bind the signal recognition particle and disrupt protein trafficking•These disruptions of protein production suppress the interferon response to infection SARS-CoV-2 proteins directly engage host RNAs to dysregulate essential steps of protein production and suppress the interferon response.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.10.004</identifier><identifier>PMID: 33080218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A549 Cells ; Animals ; Chlorocebus aethiops ; COVID-19 - metabolism ; COVID-19 - virology ; HEK293 Cells ; Host-Pathogen Interactions ; Humans ; interferon ; Interferons - metabolism ; mRNA splicing ; NSP1 ; NSP16 ; NSP8 ; NSP9 ; Protein Biosynthesis ; protein trafficking ; Protein Transport ; RNA Splicing ; RNA, Messenger - metabolism ; RNA, Ribosomal, 18S - metabolism ; RNA, Small Cytoplasmic - chemistry ; RNA, Small Cytoplasmic - metabolism ; RNA-protein interactions ; SARS-CoV-2 ; SARS-CoV-2 - metabolism ; Signal Recognition Particle - chemistry ; Signal Recognition Particle - metabolism ; translation ; Vero Cells ; Viral Nonstructural Proteins - chemistry ; Viral Nonstructural Proteins - metabolism</subject><ispartof>Cell, 2020-11, Vol.183 (5), p.1325-1339.e21</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-f95d678177779d815683357dcdbae968aeb2009cd8f3e5423eff9705737269bb3</citedby><cites>FETCH-LOGICAL-c549t-f95d678177779d815683357dcdbae968aeb2009cd8f3e5423eff9705737269bb3</cites><orcidid>0000-0002-4654-8974 ; 0000-0001-6014-387X ; 0000-0003-1862-5204 ; 0000-0001-7400-4125 ; 0000-0002-9797-0104 ; 0000-0001-6662-6258 ; 0000-0003-3893-3466 ; 0000-0002-8766-2378 ; 0000-0001-9495-4056 ; 0000-0002-2541-3851 ; 0000-0001-6839-0306 ; 0000-0003-4748-9352 ; 0000-0003-1640-2293 ; 0000-0002-2736-8740 ; 0000-0003-4503-0118 ; 0000-0003-3832-4871 ; 0000-0002-0508-1781 ; 0000-0001-8391-370X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420313106$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33080218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Abhik K.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Bruce, Emily A.</creatorcontrib><creatorcontrib>Honson, Drew D.</creatorcontrib><creatorcontrib>Chen, Linlin M.</creatorcontrib><creatorcontrib>Chow, Amy</creatorcontrib><creatorcontrib>Bhat, Prashant</creatorcontrib><creatorcontrib>Ollikainen, Noah</creatorcontrib><creatorcontrib>Quinodoz, Sofia A.</creatorcontrib><creatorcontrib>Loney, Colin</creatorcontrib><creatorcontrib>Thai, Jasmine</creatorcontrib><creatorcontrib>Miller, Zachary D.</creatorcontrib><creatorcontrib>Lin, Aaron E.</creatorcontrib><creatorcontrib>Schmidt, Madaline M.</creatorcontrib><creatorcontrib>Stewart, Douglas G.</creatorcontrib><creatorcontrib>Goldfarb, Daniel</creatorcontrib><creatorcontrib>De Lorenzo, Giuditta</creatorcontrib><creatorcontrib>Rihn, Suzannah J.</creatorcontrib><creatorcontrib>Voorhees, Rebecca M.</creatorcontrib><creatorcontrib>Botten, Jason W.</creatorcontrib><creatorcontrib>Majumdar, Devdoot</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><title>SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses</title><title>Cell</title><addtitle>Cell</addtitle><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses. [Display omitted] •NSP16 binds mRNA recognition domains of U1/U2 snRNAs and disrupts mRNA splicing•NSP1 binds in the mRNA entry channel of the ribosome to disrupt protein translation•NSP8 and NSP9 bind the signal recognition particle and disrupt protein trafficking•These disruptions of protein production suppress the interferon response to infection SARS-CoV-2 proteins directly engage host RNAs to dysregulate essential steps of protein production and suppress the interferon response.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Chlorocebus aethiops</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - virology</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>interferon</subject><subject>Interferons - metabolism</subject><subject>mRNA splicing</subject><subject>NSP1</subject><subject>NSP16</subject><subject>NSP8</subject><subject>NSP9</subject><subject>Protein Biosynthesis</subject><subject>protein trafficking</subject><subject>Protein Transport</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><subject>RNA, Small Cytoplasmic - chemistry</subject><subject>RNA, Small Cytoplasmic - metabolism</subject><subject>RNA-protein interactions</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Signal Recognition Particle - chemistry</subject><subject>Signal Recognition Particle - metabolism</subject><subject>translation</subject><subject>Vero Cells</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral Nonstructural Proteins - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kHn3obPNnMsmACGWrtlBQ3OqTEDLJnZp1NhmTTKHf3gxbi740L4F7f-fk5h6EXhO8Jpi0p7u1gXFcU0yXwhrj5glaEdyJuiGCPkUrjDtay1Y0R-hFSjuMseScP0dHjGGJKZEr9GN79nVbb8L3mlbnLsV5yqnaTqMzzt-cVNdR-zTq7II_qbS31ZcYMji_NIbBmV-FqnKotvM0RUipuggpV-cwgE-QXqJngx4TvLq_j9G3jx-uNxf11edPl5uzq9rwpsv10HHbCklEOZ2VhLeSMS6ssb2GrpUaelq-YqwcGPCGMhiGTmAumKBt1_fsGL0_-E5zvwdrwOeoRzVFt9fxTgXt1P8d736qm3CrBG-YlG0xeHtvEMPvGVJWe5eW5WoPYU6KNpx2ZUJMC0oPqIkhpQjDwzMEqyUWtVOLUi2xLLUSSxG9-XfAB8nfHArw7gBAWdOtg6iSceANWBfBZGWDe8z_DxEynpQ</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Banerjee, Abhik K.</creator><creator>Blanco, Mario R.</creator><creator>Bruce, Emily A.</creator><creator>Honson, Drew D.</creator><creator>Chen, Linlin M.</creator><creator>Chow, Amy</creator><creator>Bhat, Prashant</creator><creator>Ollikainen, Noah</creator><creator>Quinodoz, Sofia A.</creator><creator>Loney, Colin</creator><creator>Thai, Jasmine</creator><creator>Miller, Zachary D.</creator><creator>Lin, Aaron E.</creator><creator>Schmidt, Madaline M.</creator><creator>Stewart, Douglas G.</creator><creator>Goldfarb, Daniel</creator><creator>De Lorenzo, Giuditta</creator><creator>Rihn, Suzannah J.</creator><creator>Voorhees, Rebecca M.</creator><creator>Botten, Jason W.</creator><creator>Majumdar, Devdoot</creator><creator>Guttman, Mitchell</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4654-8974</orcidid><orcidid>https://orcid.org/0000-0001-6014-387X</orcidid><orcidid>https://orcid.org/0000-0003-1862-5204</orcidid><orcidid>https://orcid.org/0000-0001-7400-4125</orcidid><orcidid>https://orcid.org/0000-0002-9797-0104</orcidid><orcidid>https://orcid.org/0000-0001-6662-6258</orcidid><orcidid>https://orcid.org/0000-0003-3893-3466</orcidid><orcidid>https://orcid.org/0000-0002-8766-2378</orcidid><orcidid>https://orcid.org/0000-0001-9495-4056</orcidid><orcidid>https://orcid.org/0000-0002-2541-3851</orcidid><orcidid>https://orcid.org/0000-0001-6839-0306</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0003-1640-2293</orcidid><orcidid>https://orcid.org/0000-0002-2736-8740</orcidid><orcidid>https://orcid.org/0000-0003-4503-0118</orcidid><orcidid>https://orcid.org/0000-0003-3832-4871</orcidid><orcidid>https://orcid.org/0000-0002-0508-1781</orcidid><orcidid>https://orcid.org/0000-0001-8391-370X</orcidid></search><sort><creationdate>20201125</creationdate><title>SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses</title><author>Banerjee, Abhik K. ; Blanco, Mario R. ; Bruce, Emily A. ; Honson, Drew D. ; Chen, Linlin M. ; Chow, Amy ; Bhat, Prashant ; Ollikainen, Noah ; Quinodoz, Sofia A. ; Loney, Colin ; Thai, Jasmine ; Miller, Zachary D. ; Lin, Aaron E. ; Schmidt, Madaline M. ; Stewart, Douglas G. ; Goldfarb, Daniel ; De Lorenzo, Giuditta ; Rihn, Suzannah J. ; Voorhees, Rebecca M. ; Botten, Jason W. ; Majumdar, Devdoot ; Guttman, Mitchell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-f95d678177779d815683357dcdbae968aeb2009cd8f3e5423eff9705737269bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Chlorocebus aethiops</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - virology</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>interferon</topic><topic>Interferons - metabolism</topic><topic>mRNA splicing</topic><topic>NSP1</topic><topic>NSP16</topic><topic>NSP8</topic><topic>NSP9</topic><topic>Protein Biosynthesis</topic><topic>protein trafficking</topic><topic>Protein Transport</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><topic>RNA, Small Cytoplasmic - chemistry</topic><topic>RNA, Small Cytoplasmic - metabolism</topic><topic>RNA-protein interactions</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Signal Recognition Particle - chemistry</topic><topic>Signal Recognition Particle - metabolism</topic><topic>translation</topic><topic>Vero Cells</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral Nonstructural Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Abhik K.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Bruce, Emily A.</creatorcontrib><creatorcontrib>Honson, Drew D.</creatorcontrib><creatorcontrib>Chen, Linlin M.</creatorcontrib><creatorcontrib>Chow, Amy</creatorcontrib><creatorcontrib>Bhat, Prashant</creatorcontrib><creatorcontrib>Ollikainen, Noah</creatorcontrib><creatorcontrib>Quinodoz, Sofia A.</creatorcontrib><creatorcontrib>Loney, Colin</creatorcontrib><creatorcontrib>Thai, Jasmine</creatorcontrib><creatorcontrib>Miller, Zachary D.</creatorcontrib><creatorcontrib>Lin, Aaron E.</creatorcontrib><creatorcontrib>Schmidt, Madaline M.</creatorcontrib><creatorcontrib>Stewart, Douglas G.</creatorcontrib><creatorcontrib>Goldfarb, Daniel</creatorcontrib><creatorcontrib>De Lorenzo, Giuditta</creatorcontrib><creatorcontrib>Rihn, Suzannah J.</creatorcontrib><creatorcontrib>Voorhees, Rebecca M.</creatorcontrib><creatorcontrib>Botten, Jason W.</creatorcontrib><creatorcontrib>Majumdar, Devdoot</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Abhik K.</au><au>Blanco, Mario R.</au><au>Bruce, Emily A.</au><au>Honson, Drew D.</au><au>Chen, Linlin M.</au><au>Chow, Amy</au><au>Bhat, Prashant</au><au>Ollikainen, Noah</au><au>Quinodoz, Sofia A.</au><au>Loney, Colin</au><au>Thai, Jasmine</au><au>Miller, Zachary D.</au><au>Lin, Aaron E.</au><au>Schmidt, Madaline M.</au><au>Stewart, Douglas G.</au><au>Goldfarb, Daniel</au><au>De Lorenzo, Giuditta</au><au>Rihn, Suzannah J.</au><au>Voorhees, Rebecca M.</au><au>Botten, Jason W.</au><au>Majumdar, Devdoot</au><au>Guttman, Mitchell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>183</volume><issue>5</issue><spage>1325</spage><epage>1339.e21</epage><pages>1325-1339.e21</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses. [Display omitted] •NSP16 binds mRNA recognition domains of U1/U2 snRNAs and disrupts mRNA splicing•NSP1 binds in the mRNA entry channel of the ribosome to disrupt protein translation•NSP8 and NSP9 bind the signal recognition particle and disrupt protein trafficking•These disruptions of protein production suppress the interferon response to infection SARS-CoV-2 proteins directly engage host RNAs to dysregulate essential steps of protein production and suppress the interferon response.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33080218</pmid><doi>10.1016/j.cell.2020.10.004</doi><orcidid>https://orcid.org/0000-0002-4654-8974</orcidid><orcidid>https://orcid.org/0000-0001-6014-387X</orcidid><orcidid>https://orcid.org/0000-0003-1862-5204</orcidid><orcidid>https://orcid.org/0000-0001-7400-4125</orcidid><orcidid>https://orcid.org/0000-0002-9797-0104</orcidid><orcidid>https://orcid.org/0000-0001-6662-6258</orcidid><orcidid>https://orcid.org/0000-0003-3893-3466</orcidid><orcidid>https://orcid.org/0000-0002-8766-2378</orcidid><orcidid>https://orcid.org/0000-0001-9495-4056</orcidid><orcidid>https://orcid.org/0000-0002-2541-3851</orcidid><orcidid>https://orcid.org/0000-0001-6839-0306</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0003-1640-2293</orcidid><orcidid>https://orcid.org/0000-0002-2736-8740</orcidid><orcidid>https://orcid.org/0000-0003-4503-0118</orcidid><orcidid>https://orcid.org/0000-0003-3832-4871</orcidid><orcidid>https://orcid.org/0000-0002-0508-1781</orcidid><orcidid>https://orcid.org/0000-0001-8391-370X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-11, Vol.183 (5), p.1325-1339.e21
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_pubmed_primary_33080218
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects A549 Cells
Animals
Chlorocebus aethiops
COVID-19 - metabolism
COVID-19 - virology
HEK293 Cells
Host-Pathogen Interactions
Humans
interferon
Interferons - metabolism
mRNA splicing
NSP1
NSP16
NSP8
NSP9
Protein Biosynthesis
protein trafficking
Protein Transport
RNA Splicing
RNA, Messenger - metabolism
RNA, Ribosomal, 18S - metabolism
RNA, Small Cytoplasmic - chemistry
RNA, Small Cytoplasmic - metabolism
RNA-protein interactions
SARS-CoV-2
SARS-CoV-2 - metabolism
Signal Recognition Particle - chemistry
Signal Recognition Particle - metabolism
translation
Vero Cells
Viral Nonstructural Proteins - chemistry
Viral Nonstructural Proteins - metabolism
title SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20Disrupts%20Splicing,%20Translation,%20and%20Protein%20Trafficking%20to%20Suppress%20Host%20Defenses&rft.jtitle=Cell&rft.au=Banerjee,%20Abhik%20K.&rft.date=2020-11-25&rft.volume=183&rft.issue=5&rft.spage=1325&rft.epage=1339.e21&rft.pages=1325-1339.e21&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.10.004&rft_dat=%3Cproquest_pubme%3E2452978102%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452978102&rft_id=info:pmid/33080218&rft_els_id=S0092867420313106&rfr_iscdi=true