Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House

The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-11, Vol.54 (21), p.13488-13497
Hauptverfasser: Wang, Chen, Bottorff, Brandon, Reidy, Emily, Rosales, Colleen Marciel F, Collins, Douglas B, Novoselac, Atila, Farmer, Delphine K, Vance, Marina E, Stevens, Philip S, Abbatt, Jonathan P.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13497
container_issue 21
container_start_page 13488
container_title Environmental science & technology
container_volume 54
creator Wang, Chen
Bottorff, Brandon
Reidy, Emily
Rosales, Colleen Marciel F
Collins, Douglas B
Novoselac, Atila
Farmer, Delphine K
Vance, Marina E
Stevens, Philip S
Abbatt, Jonathan P.D
description The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.
doi_str_mv 10.1021/acs.est.0c05356
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33064464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EgvIxsyFLjJDi7yYjREArVXQApG6Ra18g0NolTkD8exxayoTEdNbpec93D0LHlPQpYfRCm9CH0PSJIZJLtYV6VDKSyFTSbdQjhPIk42q6h_ZDeCGEME7SXbTHOVFCKNFD09z718o9neOrOWjzjPNY3HdDO4svqxrn3tmqqXzXxfdN7d3T_BOPFkttGjyGd5gH7Es8nNxNcOWwxkPfBjhEO6WeBzha1wP0eHP9kA-T8eR2lF-OE80VbRJg2QyktRoo0xLkgBsCmdBCWS4Is8paSi0VkilQnHIpBgPLwaQCpIDS8gN0upq7rP1bG10UL76tXfyyYEIpIrNMskhdrChT-xBqKItlXS10_VlQUnQmi2iy6NJrkzFxsp7bzhZgN_yPugikK-ADZr4MpgJnYINF1zLNmMiy-KIirxrdKcx965oYPft_9JfuVtwc99feX83RnYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059952</pqid></control><display><type>article</type><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</creator><creatorcontrib>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</creatorcontrib><description>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c05356</identifier><identifier>PMID: 33064464</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Air Conditioning ; Air Pollution, Indoor - analysis ; Anthropogenic Impacts on the Atmosphere ; Background levels ; Baseline studies ; Bleaches ; Cleaning ; Condensates ; Cooking ; Engineering ; Engineering, Environmental ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Fluorescence ; Humans ; Indoor environments ; Ionization ; Ions ; Laser induced fluorescence ; Life Sciences &amp; Biomedicine ; Mass spectrometry ; Mass spectroscopy ; Mixing ratio ; Natural products ; Nitrogen dioxide ; Nitrous acid ; Nitrous Acid - analysis ; Occupancy ; Ratios ; Science &amp; Technology ; Technology ; Ventilation ; Vinegar</subject><ispartof>Environmental science &amp; technology, 2020-11, Vol.54 (21), p.13488-13497</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589249900014</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</citedby><cites>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</cites><orcidid>0000-0002-6470-9970 ; 0000-0001-9899-4215 ; 0000-0001-9565-8777 ; 0000-0002-3372-334X ; 0000-0002-6248-9644 ; 0000-0003-0940-0353 ; 0000-0002-8925-8352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c05356$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c05356$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33064464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Reidy, Emily</creatorcontrib><creatorcontrib>Rosales, Colleen Marciel F</creatorcontrib><creatorcontrib>Collins, Douglas B</creatorcontrib><creatorcontrib>Novoselac, Atila</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><creatorcontrib>Vance, Marina E</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Abbatt, Jonathan P.D</creatorcontrib><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><title>Environmental science &amp; technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ. Sci. Technol</addtitle><description>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</description><subject>Air Conditioning</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Anthropogenic Impacts on the Atmosphere</subject><subject>Background levels</subject><subject>Baseline studies</subject><subject>Bleaches</subject><subject>Cleaning</subject><subject>Condensates</subject><subject>Cooking</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Indoor environments</subject><subject>Ionization</subject><subject>Ions</subject><subject>Laser induced fluorescence</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mixing ratio</subject><subject>Natural products</subject><subject>Nitrogen dioxide</subject><subject>Nitrous acid</subject><subject>Nitrous Acid - analysis</subject><subject>Occupancy</subject><subject>Ratios</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Ventilation</subject><subject>Vinegar</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EgvIxsyFLjJDi7yYjREArVXQApG6Ra18g0NolTkD8exxayoTEdNbpec93D0LHlPQpYfRCm9CH0PSJIZJLtYV6VDKSyFTSbdQjhPIk42q6h_ZDeCGEME7SXbTHOVFCKNFD09z718o9neOrOWjzjPNY3HdDO4svqxrn3tmqqXzXxfdN7d3T_BOPFkttGjyGd5gH7Es8nNxNcOWwxkPfBjhEO6WeBzha1wP0eHP9kA-T8eR2lF-OE80VbRJg2QyktRoo0xLkgBsCmdBCWS4Is8paSi0VkilQnHIpBgPLwaQCpIDS8gN0upq7rP1bG10UL76tXfyyYEIpIrNMskhdrChT-xBqKItlXS10_VlQUnQmi2iy6NJrkzFxsp7bzhZgN_yPugikK-ADZr4MpgJnYINF1zLNmMiy-KIirxrdKcx965oYPft_9JfuVtwc99feX83RnYM</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Wang, Chen</creator><creator>Bottorff, Brandon</creator><creator>Reidy, Emily</creator><creator>Rosales, Colleen Marciel F</creator><creator>Collins, Douglas B</creator><creator>Novoselac, Atila</creator><creator>Farmer, Delphine K</creator><creator>Vance, Marina E</creator><creator>Stevens, Philip S</creator><creator>Abbatt, Jonathan P.D</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-9565-8777</orcidid><orcidid>https://orcid.org/0000-0002-3372-334X</orcidid><orcidid>https://orcid.org/0000-0002-6248-9644</orcidid><orcidid>https://orcid.org/0000-0003-0940-0353</orcidid><orcidid>https://orcid.org/0000-0002-8925-8352</orcidid></search><sort><creationdate>20201103</creationdate><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><author>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air Conditioning</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Anthropogenic Impacts on the Atmosphere</topic><topic>Background levels</topic><topic>Baseline studies</topic><topic>Bleaches</topic><topic>Cleaning</topic><topic>Condensates</topic><topic>Cooking</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Indoor environments</topic><topic>Ionization</topic><topic>Ions</topic><topic>Laser induced fluorescence</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mixing ratio</topic><topic>Natural products</topic><topic>Nitrogen dioxide</topic><topic>Nitrous acid</topic><topic>Nitrous Acid - analysis</topic><topic>Occupancy</topic><topic>Ratios</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Ventilation</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Reidy, Emily</creatorcontrib><creatorcontrib>Rosales, Colleen Marciel F</creatorcontrib><creatorcontrib>Collins, Douglas B</creatorcontrib><creatorcontrib>Novoselac, Atila</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><creatorcontrib>Vance, Marina E</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Abbatt, Jonathan P.D</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Bottorff, Brandon</au><au>Reidy, Emily</au><au>Rosales, Colleen Marciel F</au><au>Collins, Douglas B</au><au>Novoselac, Atila</au><au>Farmer, Delphine K</au><au>Vance, Marina E</au><au>Stevens, Philip S</au><au>Abbatt, Jonathan P.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</atitle><jtitle>Environmental science &amp; technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13488</spage><epage>13497</epage><pages>13488-13497</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33064464</pmid><doi>10.1021/acs.est.0c05356</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-9565-8777</orcidid><orcidid>https://orcid.org/0000-0002-3372-334X</orcidid><orcidid>https://orcid.org/0000-0002-6248-9644</orcidid><orcidid>https://orcid.org/0000-0003-0940-0353</orcidid><orcidid>https://orcid.org/0000-0002-8925-8352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-11, Vol.54 (21), p.13488-13497
issn 0013-936X
1520-5851
language eng
recordid cdi_pubmed_primary_33064464
source MEDLINE; American Chemical Society Journals
subjects Air Conditioning
Air Pollution, Indoor - analysis
Anthropogenic Impacts on the Atmosphere
Background levels
Baseline studies
Bleaches
Cleaning
Condensates
Cooking
Engineering
Engineering, Environmental
Environmental Sciences
Environmental Sciences & Ecology
Fluorescence
Humans
Indoor environments
Ionization
Ions
Laser induced fluorescence
Life Sciences & Biomedicine
Mass spectrometry
Mass spectroscopy
Mixing ratio
Natural products
Nitrogen dioxide
Nitrous acid
Nitrous Acid - analysis
Occupancy
Ratios
Science & Technology
Technology
Ventilation
Vinegar
title Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooking,%20Bleach%20Cleaning,%20and%20Air%20Conditioning%20Strongly%20Impact%20Levels%20of%20HONO%20in%20a%20House&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Chen&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13488&rft.epage=13497&rft.pages=13488-13497&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c05356&rft_dat=%3Cproquest_pubme%3E2466059952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466059952&rft_id=info:pmid/33064464&rfr_iscdi=true