Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House
The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-11, Vol.54 (21), p.13488-13497 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13497 |
---|---|
container_issue | 21 |
container_start_page | 13488 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Wang, Chen Bottorff, Brandon Reidy, Emily Rosales, Colleen Marciel F Collins, Douglas B Novoselac, Atila Farmer, Delphine K Vance, Marina E Stevens, Philip S Abbatt, Jonathan P.D |
description | The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities. |
doi_str_mv | 10.1021/acs.est.0c05356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33064464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EgvIxsyFLjJDi7yYjREArVXQApG6Ra18g0NolTkD8exxayoTEdNbpec93D0LHlPQpYfRCm9CH0PSJIZJLtYV6VDKSyFTSbdQjhPIk42q6h_ZDeCGEME7SXbTHOVFCKNFD09z718o9neOrOWjzjPNY3HdDO4svqxrn3tmqqXzXxfdN7d3T_BOPFkttGjyGd5gH7Es8nNxNcOWwxkPfBjhEO6WeBzha1wP0eHP9kA-T8eR2lF-OE80VbRJg2QyktRoo0xLkgBsCmdBCWS4Is8paSi0VkilQnHIpBgPLwaQCpIDS8gN0upq7rP1bG10UL76tXfyyYEIpIrNMskhdrChT-xBqKItlXS10_VlQUnQmi2iy6NJrkzFxsp7bzhZgN_yPugikK-ADZr4MpgJnYINF1zLNmMiy-KIirxrdKcx965oYPft_9JfuVtwc99feX83RnYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059952</pqid></control><display><type>article</type><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</creator><creatorcontrib>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</creatorcontrib><description>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c05356</identifier><identifier>PMID: 33064464</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Air Conditioning ; Air Pollution, Indoor - analysis ; Anthropogenic Impacts on the Atmosphere ; Background levels ; Baseline studies ; Bleaches ; Cleaning ; Condensates ; Cooking ; Engineering ; Engineering, Environmental ; Environmental Sciences ; Environmental Sciences & Ecology ; Fluorescence ; Humans ; Indoor environments ; Ionization ; Ions ; Laser induced fluorescence ; Life Sciences & Biomedicine ; Mass spectrometry ; Mass spectroscopy ; Mixing ratio ; Natural products ; Nitrogen dioxide ; Nitrous acid ; Nitrous Acid - analysis ; Occupancy ; Ratios ; Science & Technology ; Technology ; Ventilation ; Vinegar</subject><ispartof>Environmental science & technology, 2020-11, Vol.54 (21), p.13488-13497</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589249900014</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</citedby><cites>FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</cites><orcidid>0000-0002-6470-9970 ; 0000-0001-9899-4215 ; 0000-0001-9565-8777 ; 0000-0002-3372-334X ; 0000-0002-6248-9644 ; 0000-0003-0940-0353 ; 0000-0002-8925-8352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c05356$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c05356$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33064464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Reidy, Emily</creatorcontrib><creatorcontrib>Rosales, Colleen Marciel F</creatorcontrib><creatorcontrib>Collins, Douglas B</creatorcontrib><creatorcontrib>Novoselac, Atila</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><creatorcontrib>Vance, Marina E</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Abbatt, Jonathan P.D</creatorcontrib><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><title>Environmental science & technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ. Sci. Technol</addtitle><description>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</description><subject>Air Conditioning</subject><subject>Air Pollution, Indoor - analysis</subject><subject>Anthropogenic Impacts on the Atmosphere</subject><subject>Background levels</subject><subject>Baseline studies</subject><subject>Bleaches</subject><subject>Cleaning</subject><subject>Condensates</subject><subject>Cooking</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Indoor environments</subject><subject>Ionization</subject><subject>Ions</subject><subject>Laser induced fluorescence</subject><subject>Life Sciences & Biomedicine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mixing ratio</subject><subject>Natural products</subject><subject>Nitrogen dioxide</subject><subject>Nitrous acid</subject><subject>Nitrous Acid - analysis</subject><subject>Occupancy</subject><subject>Ratios</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Ventilation</subject><subject>Vinegar</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EgvIxsyFLjJDi7yYjREArVXQApG6Ra18g0NolTkD8exxayoTEdNbpec93D0LHlPQpYfRCm9CH0PSJIZJLtYV6VDKSyFTSbdQjhPIk42q6h_ZDeCGEME7SXbTHOVFCKNFD09z718o9neOrOWjzjPNY3HdDO4svqxrn3tmqqXzXxfdN7d3T_BOPFkttGjyGd5gH7Es8nNxNcOWwxkPfBjhEO6WeBzha1wP0eHP9kA-T8eR2lF-OE80VbRJg2QyktRoo0xLkgBsCmdBCWS4Is8paSi0VkilQnHIpBgPLwaQCpIDS8gN0upq7rP1bG10UL76tXfyyYEIpIrNMskhdrChT-xBqKItlXS10_VlQUnQmi2iy6NJrkzFxsp7bzhZgN_yPugikK-ADZr4MpgJnYINF1zLNmMiy-KIirxrdKcx965oYPft_9JfuVtwc99feX83RnYM</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Wang, Chen</creator><creator>Bottorff, Brandon</creator><creator>Reidy, Emily</creator><creator>Rosales, Colleen Marciel F</creator><creator>Collins, Douglas B</creator><creator>Novoselac, Atila</creator><creator>Farmer, Delphine K</creator><creator>Vance, Marina E</creator><creator>Stevens, Philip S</creator><creator>Abbatt, Jonathan P.D</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-9565-8777</orcidid><orcidid>https://orcid.org/0000-0002-3372-334X</orcidid><orcidid>https://orcid.org/0000-0002-6248-9644</orcidid><orcidid>https://orcid.org/0000-0003-0940-0353</orcidid><orcidid>https://orcid.org/0000-0002-8925-8352</orcidid></search><sort><creationdate>20201103</creationdate><title>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</title><author>Wang, Chen ; Bottorff, Brandon ; Reidy, Emily ; Rosales, Colleen Marciel F ; Collins, Douglas B ; Novoselac, Atila ; Farmer, Delphine K ; Vance, Marina E ; Stevens, Philip S ; Abbatt, Jonathan P.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-e29be5ddae12a5e573c0e94a46d3402d6dd11d14526e63135477d3ec84e54efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air Conditioning</topic><topic>Air Pollution, Indoor - analysis</topic><topic>Anthropogenic Impacts on the Atmosphere</topic><topic>Background levels</topic><topic>Baseline studies</topic><topic>Bleaches</topic><topic>Cleaning</topic><topic>Condensates</topic><topic>Cooking</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Indoor environments</topic><topic>Ionization</topic><topic>Ions</topic><topic>Laser induced fluorescence</topic><topic>Life Sciences & Biomedicine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mixing ratio</topic><topic>Natural products</topic><topic>Nitrogen dioxide</topic><topic>Nitrous acid</topic><topic>Nitrous Acid - analysis</topic><topic>Occupancy</topic><topic>Ratios</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Ventilation</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Reidy, Emily</creatorcontrib><creatorcontrib>Rosales, Colleen Marciel F</creatorcontrib><creatorcontrib>Collins, Douglas B</creatorcontrib><creatorcontrib>Novoselac, Atila</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><creatorcontrib>Vance, Marina E</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Abbatt, Jonathan P.D</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Bottorff, Brandon</au><au>Reidy, Emily</au><au>Rosales, Colleen Marciel F</au><au>Collins, Douglas B</au><au>Novoselac, Atila</au><au>Farmer, Delphine K</au><au>Vance, Marina E</au><au>Stevens, Philip S</au><au>Abbatt, Jonathan P.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House</atitle><jtitle>Environmental science & technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13488</spage><epage>13497</epage><pages>13488-13497</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71–90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33064464</pmid><doi>10.1021/acs.est.0c05356</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-9565-8777</orcidid><orcidid>https://orcid.org/0000-0002-3372-334X</orcidid><orcidid>https://orcid.org/0000-0002-6248-9644</orcidid><orcidid>https://orcid.org/0000-0003-0940-0353</orcidid><orcidid>https://orcid.org/0000-0002-8925-8352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-11, Vol.54 (21), p.13488-13497 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmed_primary_33064464 |
source | MEDLINE; American Chemical Society Journals |
subjects | Air Conditioning Air Pollution, Indoor - analysis Anthropogenic Impacts on the Atmosphere Background levels Baseline studies Bleaches Cleaning Condensates Cooking Engineering Engineering, Environmental Environmental Sciences Environmental Sciences & Ecology Fluorescence Humans Indoor environments Ionization Ions Laser induced fluorescence Life Sciences & Biomedicine Mass spectrometry Mass spectroscopy Mixing ratio Natural products Nitrogen dioxide Nitrous acid Nitrous Acid - analysis Occupancy Ratios Science & Technology Technology Ventilation Vinegar |
title | Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooking,%20Bleach%20Cleaning,%20and%20Air%20Conditioning%20Strongly%20Impact%20Levels%20of%20HONO%20in%20a%20House&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Chen&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13488&rft.epage=13497&rft.pages=13488-13497&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c05356&rft_dat=%3Cproquest_pubme%3E2466059952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466059952&rft_id=info:pmid/33064464&rfr_iscdi=true |