Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding
Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequenc...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-10, Vol.22 (4), p.23399-2341 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2341 |
---|---|
container_issue | 4 |
container_start_page | 23399 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Ramírez, Pedro G Del Pópolo, Mario G Vila, Jorge A Longo, Gabriel S |
description | Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles.
Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides. |
doi_str_mv | 10.1039/d0cp02770g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33048078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452987864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1UxLYLF-5FrnqpkBbGsRPbvaEFClIlOJRz5MTjravECXZSaf89XnbZShx6sUfvfXoa-xHylsEHBlx_tNCOUEgJmxfklImKrzQocXKcZbUgZyk9AAArGX9FFpyDUCDVKXm8u8fYD3YbTO_bRAdHW-w6OmLAKZrJh02ex8lbzGagnR-9pT32TTQB0zVN-HvG0CI14UmnpvXWT1sacTN3ZkKa5uhMphofbM58TV460yV8c7iX5NfXL3frb6vbHzff159uV60QbFppY0EzJiuNvJIotHAGRGE0V7I0VjUIWpZuJwvt8gFomBBZtq4pSsWX5GqfO8Yh75mmuvdp98C85DCnuhAlVEKVoszo5X_owzDHkLfbUYVWUlUiU-_3VBuHlCK6eoy-N3FbM6h3bdSfYf3zbxs3GX53iJybHu0R_ff9GTjfAzG1R_epzuxfPOfXo3X8D1o1m2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452987864</pqid></control><display><type>article</type><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</creator><creatorcontrib>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</creatorcontrib><description>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles.
Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp02770g</identifier><identifier>PMID: 33048078</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Amino Acid Sequence ; Binding ; Cell membranes ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - metabolism ; Charge distribution ; Free energy ; Hydrogen-Ion Concentration ; Lipids ; Membrane Lipids - metabolism ; Membranes ; Molecular theory ; Parameters ; Peptides ; Protein Binding ; Protonation ; Static Electricity ; Surface chemistry ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (4), p.23399-2341</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</citedby><cites>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</cites><orcidid>0000-0002-1435-2424 ; 0000-0001-7557-9350 ; 0000-0001-8353-5163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez, Pedro G</creatorcontrib><creatorcontrib>Del Pópolo, Mario G</creatorcontrib><creatorcontrib>Vila, Jorge A</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles.
Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</description><subject>Adsorption</subject><subject>Amino Acid Sequence</subject><subject>Binding</subject><subject>Cell membranes</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Charge distribution</subject><subject>Free energy</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>Molecular theory</subject><subject>Parameters</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>Protonation</subject><subject>Static Electricity</subject><subject>Surface chemistry</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS1UxLYLF-5FrnqpkBbGsRPbvaEFClIlOJRz5MTjravECXZSaf89XnbZShx6sUfvfXoa-xHylsEHBlx_tNCOUEgJmxfklImKrzQocXKcZbUgZyk9AAArGX9FFpyDUCDVKXm8u8fYD3YbTO_bRAdHW-w6OmLAKZrJh02ex8lbzGagnR-9pT32TTQB0zVN-HvG0CI14UmnpvXWT1sacTN3ZkKa5uhMphofbM58TV460yV8c7iX5NfXL3frb6vbHzff159uV60QbFppY0EzJiuNvJIotHAGRGE0V7I0VjUIWpZuJwvt8gFomBBZtq4pSsWX5GqfO8Yh75mmuvdp98C85DCnuhAlVEKVoszo5X_owzDHkLfbUYVWUlUiU-_3VBuHlCK6eoy-N3FbM6h3bdSfYf3zbxs3GX53iJybHu0R_ff9GTjfAzG1R_epzuxfPOfXo3X8D1o1m2g</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Ramírez, Pedro G</creator><creator>Del Pópolo, Mario G</creator><creator>Vila, Jorge A</creator><creator>Longo, Gabriel S</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1435-2424</orcidid><orcidid>https://orcid.org/0000-0001-7557-9350</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid></search><sort><creationdate>20201021</creationdate><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><author>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Amino Acid Sequence</topic><topic>Binding</topic><topic>Cell membranes</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Charge distribution</topic><topic>Free energy</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>Molecular theory</topic><topic>Parameters</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>Protonation</topic><topic>Static Electricity</topic><topic>Surface chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, Pedro G</creatorcontrib><creatorcontrib>Del Pópolo, Mario G</creatorcontrib><creatorcontrib>Vila, Jorge A</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, Pedro G</au><au>Del Pópolo, Mario G</au><au>Vila, Jorge A</au><au>Longo, Gabriel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-10-21</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>23399</spage><epage>2341</epage><pages>23399-2341</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles.
Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33048078</pmid><doi>10.1039/d0cp02770g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1435-2424</orcidid><orcidid>https://orcid.org/0000-0001-7557-9350</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (4), p.23399-2341 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_33048078 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorption Amino Acid Sequence Binding Cell membranes Cell-Penetrating Peptides - chemistry Cell-Penetrating Peptides - metabolism Charge distribution Free energy Hydrogen-Ion Concentration Lipids Membrane Lipids - metabolism Membranes Molecular theory Parameters Peptides Protein Binding Protonation Static Electricity Surface chemistry Thermodynamics |
title | Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20cell%20penetrating%20peptides%20on%20lipid%20membranes:%20sequence%20and%20membrane%20acidity%20regulate%20surface%20binding&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ram%C3%ADrez,%20Pedro%20G&rft.date=2020-10-21&rft.volume=22&rft.issue=4&rft.spage=23399&rft.epage=2341&rft.pages=23399-2341&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp02770g&rft_dat=%3Cproquest_pubme%3E2452987864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452987864&rft_id=info:pmid/33048078&rfr_iscdi=true |