Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding

Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-10, Vol.22 (4), p.23399-2341
Hauptverfasser: Ramírez, Pedro G, Del Pópolo, Mario G, Vila, Jorge A, Longo, Gabriel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2341
container_issue 4
container_start_page 23399
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Ramírez, Pedro G
Del Pópolo, Mario G
Vila, Jorge A
Longo, Gabriel S
description Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles. Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.
doi_str_mv 10.1039/d0cp02770g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33048078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452987864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1UxLYLF-5FrnqpkBbGsRPbvaEFClIlOJRz5MTjravECXZSaf89XnbZShx6sUfvfXoa-xHylsEHBlx_tNCOUEgJmxfklImKrzQocXKcZbUgZyk9AAArGX9FFpyDUCDVKXm8u8fYD3YbTO_bRAdHW-w6OmLAKZrJh02ex8lbzGagnR-9pT32TTQB0zVN-HvG0CI14UmnpvXWT1sacTN3ZkKa5uhMphofbM58TV460yV8c7iX5NfXL3frb6vbHzff159uV60QbFppY0EzJiuNvJIotHAGRGE0V7I0VjUIWpZuJwvt8gFomBBZtq4pSsWX5GqfO8Yh75mmuvdp98C85DCnuhAlVEKVoszo5X_owzDHkLfbUYVWUlUiU-_3VBuHlCK6eoy-N3FbM6h3bdSfYf3zbxs3GX53iJybHu0R_ff9GTjfAzG1R_epzuxfPOfXo3X8D1o1m2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452987864</pqid></control><display><type>article</type><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</creator><creatorcontrib>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</creatorcontrib><description>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles. Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp02770g</identifier><identifier>PMID: 33048078</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Amino Acid Sequence ; Binding ; Cell membranes ; Cell-Penetrating Peptides - chemistry ; Cell-Penetrating Peptides - metabolism ; Charge distribution ; Free energy ; Hydrogen-Ion Concentration ; Lipids ; Membrane Lipids - metabolism ; Membranes ; Molecular theory ; Parameters ; Peptides ; Protein Binding ; Protonation ; Static Electricity ; Surface chemistry ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (4), p.23399-2341</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</citedby><cites>FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</cites><orcidid>0000-0002-1435-2424 ; 0000-0001-7557-9350 ; 0000-0001-8353-5163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez, Pedro G</creatorcontrib><creatorcontrib>Del Pópolo, Mario G</creatorcontrib><creatorcontrib>Vila, Jorge A</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles. Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</description><subject>Adsorption</subject><subject>Amino Acid Sequence</subject><subject>Binding</subject><subject>Cell membranes</subject><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Charge distribution</subject><subject>Free energy</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>Molecular theory</subject><subject>Parameters</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>Protonation</subject><subject>Static Electricity</subject><subject>Surface chemistry</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS1UxLYLF-5FrnqpkBbGsRPbvaEFClIlOJRz5MTjravECXZSaf89XnbZShx6sUfvfXoa-xHylsEHBlx_tNCOUEgJmxfklImKrzQocXKcZbUgZyk9AAArGX9FFpyDUCDVKXm8u8fYD3YbTO_bRAdHW-w6OmLAKZrJh02ex8lbzGagnR-9pT32TTQB0zVN-HvG0CI14UmnpvXWT1sacTN3ZkKa5uhMphofbM58TV460yV8c7iX5NfXL3frb6vbHzff159uV60QbFppY0EzJiuNvJIotHAGRGE0V7I0VjUIWpZuJwvt8gFomBBZtq4pSsWX5GqfO8Yh75mmuvdp98C85DCnuhAlVEKVoszo5X_owzDHkLfbUYVWUlUiU-_3VBuHlCK6eoy-N3FbM6h3bdSfYf3zbxs3GX53iJybHu0R_ff9GTjfAzG1R_epzuxfPOfXo3X8D1o1m2g</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Ramírez, Pedro G</creator><creator>Del Pópolo, Mario G</creator><creator>Vila, Jorge A</creator><creator>Longo, Gabriel S</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1435-2424</orcidid><orcidid>https://orcid.org/0000-0001-7557-9350</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid></search><sort><creationdate>20201021</creationdate><title>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</title><author>Ramírez, Pedro G ; Del Pópolo, Mario G ; Vila, Jorge A ; Longo, Gabriel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-9ad0911769e367e494fa042a93875ad8be0975f94fa49ffa40ea144be0dfb2583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Amino Acid Sequence</topic><topic>Binding</topic><topic>Cell membranes</topic><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Charge distribution</topic><topic>Free energy</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>Molecular theory</topic><topic>Parameters</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>Protonation</topic><topic>Static Electricity</topic><topic>Surface chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, Pedro G</creatorcontrib><creatorcontrib>Del Pópolo, Mario G</creatorcontrib><creatorcontrib>Vila, Jorge A</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, Pedro G</au><au>Del Pópolo, Mario G</au><au>Vila, Jorge A</au><au>Longo, Gabriel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-10-21</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>23399</spage><epage>2341</epage><pages>23399-2341</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Cell-penetrating peptides (CPPs) are molecules that traverse cell membranes and facilitate the cellular uptake of nano-sized cargoes. In this work we characterize the adsorption of amphipathic and purely cationic CPPs on membranes containing acidic lipids. We describe how the peptide primary sequence, the location of amino-acids within the sequence, the membrane composition, and the pH of the environment, determine both the surface concentration of the peptides and the molecular organization of the interface. Our results are obtained by applying a molecular theory that takes into account the size, shape, protonation state, charge distribution and conformational flexibility of the peptides, as well as the acid-base chemistry of the lipids. We find that peptide adsorption and binding free energy result from a balance between electrostatic and van der Waals interactions, and between chemical and entropic effective forces. We observe that, within a range of physiologically relevant parameters, acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of CPPs. Membrane acidity emerges thus as a crucial parameter to consider when designing CPP-based cargo-delivery vehicles. Acidic lipids respond to pH in ways that fully promote or deplete the surface accumulation of cell penetrating peptides.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33048078</pmid><doi>10.1039/d0cp02770g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1435-2424</orcidid><orcidid>https://orcid.org/0000-0001-7557-9350</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (4), p.23399-2341
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_33048078
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Amino Acid Sequence
Binding
Cell membranes
Cell-Penetrating Peptides - chemistry
Cell-Penetrating Peptides - metabolism
Charge distribution
Free energy
Hydrogen-Ion Concentration
Lipids
Membrane Lipids - metabolism
Membranes
Molecular theory
Parameters
Peptides
Protein Binding
Protonation
Static Electricity
Surface chemistry
Thermodynamics
title Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20cell%20penetrating%20peptides%20on%20lipid%20membranes:%20sequence%20and%20membrane%20acidity%20regulate%20surface%20binding&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ram%C3%ADrez,%20Pedro%20G&rft.date=2020-10-21&rft.volume=22&rft.issue=4&rft.spage=23399&rft.epage=2341&rft.pages=23399-2341&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp02770g&rft_dat=%3Cproquest_pubme%3E2452987864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452987864&rft_id=info:pmid/33048078&rfr_iscdi=true