BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation

Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2021-09, Vol.17 (9), p.2257-2272
Hauptverfasser: da Silva Rosa, Simone C., Martens, Matthew D., Field, Jared T., Nguyen, Lucas, Kereliuk, Stephanie M., Hai, Yan, Chapman, Donald, Diehl-Jones, William, Aliani, Michel, West, Adrian R., Thliveris, James, Ghavami, Saeid, Rampitsch, Christof, Dolinsky, Vernon W., Gordon, Joseph W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2272
container_issue 9
container_start_page 2257
container_title Autophagy
container_volume 17
creator da Silva Rosa, Simone C.
Martens, Matthew D.
Field, Jared T.
Nguyen, Lucas
Kereliuk, Stephanie M.
Hai, Yan
Chapman, Donald
Diehl-Jones, William
Aliani, Michel
West, Adrian R.
Thliveris, James
Ghavami, Saeid
Rampitsch, Christof
Dolinsky, Vernon W.
Gordon, Joseph W.
description Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance. Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain;
doi_str_mv 10.1080/15548627.2020.1821548
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33044904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450654827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEYj_gJ4By5LDZ-jvuBVFWfKy2WioEZ2tqO60hsbN2ApsrvxyXdiu4cBh5ZvzOO7aeoniB0SVGEs0w50wKUl8SRHJLEpzrR8Xprl9JQfnjY07qk-IspW8IUSHn5GlxQilibI7YafHr7e31ii5nt-6-ct6M2pqyc0PQ2-BNdNCWjUvJBX_xp91vYTNdlOBN6boeXNzJp6CnwZabdtQh2XLsB_huS4g51jFsYMii9VSuPt8sZqubRdlvQ8oRpxaG7PyseNJAm-zzw3lefH3_7svVx2r56cP11WJZaSbkUHEstW5oMzey1hZ4_pyoa0tziozBGJghwtIG23pNGOKCc8qYIARTgowAel683vv247qzRls_RGhVH10HcVIBnPr3xrut2oQfSrK5qDHPBq8OBjHcjTYNqnNJ27YFb8OYFGEciUyB1FnK91IdQ0rRNsc1GKkdP_XAT-34qQO_PPfy7zcepx6AZcGbvcD5JsQOfobYGjXA1IbYRPDaJUX_v-M3vV6sCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450654827</pqid></control><display><type>article</type><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</creator><creatorcontrib>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</creatorcontrib><description>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance. Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2020.1821548</identifier><identifier>PMID: 33044904</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Autophagy - physiology ; Cells, Cultured ; Glucose - metabolism ; Humans ; Insulin signaling ; Membrane Proteins - metabolism ; mitochondria ; Mitochondrial Dynamics ; Mitochondrial Proteins - metabolism ; mitophagy ; Mitophagy - genetics ; MTOR ; muscle ; Muscle Cells - metabolism ; Nix ; Phosphorylation ; PKA ; Proto-Oncogene Proteins - metabolism ; Research Paper ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Autophagy, 2021-09, Vol.17 (9), p.2257-2272</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</citedby><cites>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</cites><orcidid>0000-0002-1309-8225 ; 0000-0001-5948-508X ; 0000-0001-9251-6693 ; 0000-0001-5191-4628 ; 0000-0002-3732-3781 ; 0000-0002-0061-2168 ; 0000-0001-8079-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496715/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496715/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva Rosa, Simone C.</creatorcontrib><creatorcontrib>Martens, Matthew D.</creatorcontrib><creatorcontrib>Field, Jared T.</creatorcontrib><creatorcontrib>Nguyen, Lucas</creatorcontrib><creatorcontrib>Kereliuk, Stephanie M.</creatorcontrib><creatorcontrib>Hai, Yan</creatorcontrib><creatorcontrib>Chapman, Donald</creatorcontrib><creatorcontrib>Diehl-Jones, William</creatorcontrib><creatorcontrib>Aliani, Michel</creatorcontrib><creatorcontrib>West, Adrian R.</creatorcontrib><creatorcontrib>Thliveris, James</creatorcontrib><creatorcontrib>Ghavami, Saeid</creatorcontrib><creatorcontrib>Rampitsch, Christof</creatorcontrib><creatorcontrib>Dolinsky, Vernon W.</creatorcontrib><creatorcontrib>Gordon, Joseph W.</creatorcontrib><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance. Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</description><subject>Animals</subject><subject>Autophagy - physiology</subject><subject>Cells, Cultured</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Insulin signaling</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>mitophagy</subject><subject>Mitophagy - genetics</subject><subject>MTOR</subject><subject>muscle</subject><subject>Muscle Cells - metabolism</subject><subject>Nix</subject><subject>Phosphorylation</subject><subject>PKA</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Research Paper</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU2P0zAQhiMEYj_gJ4By5LDZ-jvuBVFWfKy2WioEZ2tqO60hsbN2ApsrvxyXdiu4cBh5ZvzOO7aeoniB0SVGEs0w50wKUl8SRHJLEpzrR8Xprl9JQfnjY07qk-IspW8IUSHn5GlxQilibI7YafHr7e31ii5nt-6-ct6M2pqyc0PQ2-BNdNCWjUvJBX_xp91vYTNdlOBN6boeXNzJp6CnwZabdtQh2XLsB_huS4g51jFsYMii9VSuPt8sZqubRdlvQ8oRpxaG7PyseNJAm-zzw3lefH3_7svVx2r56cP11WJZaSbkUHEstW5oMzey1hZ4_pyoa0tziozBGJghwtIG23pNGOKCc8qYIARTgowAel683vv247qzRls_RGhVH10HcVIBnPr3xrut2oQfSrK5qDHPBq8OBjHcjTYNqnNJ27YFb8OYFGEciUyB1FnK91IdQ0rRNsc1GKkdP_XAT-34qQO_PPfy7zcepx6AZcGbvcD5JsQOfobYGjXA1IbYRPDaJUX_v-M3vV6sCQ</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>da Silva Rosa, Simone C.</creator><creator>Martens, Matthew D.</creator><creator>Field, Jared T.</creator><creator>Nguyen, Lucas</creator><creator>Kereliuk, Stephanie M.</creator><creator>Hai, Yan</creator><creator>Chapman, Donald</creator><creator>Diehl-Jones, William</creator><creator>Aliani, Michel</creator><creator>West, Adrian R.</creator><creator>Thliveris, James</creator><creator>Ghavami, Saeid</creator><creator>Rampitsch, Christof</creator><creator>Dolinsky, Vernon W.</creator><creator>Gordon, Joseph W.</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1309-8225</orcidid><orcidid>https://orcid.org/0000-0001-5948-508X</orcidid><orcidid>https://orcid.org/0000-0001-9251-6693</orcidid><orcidid>https://orcid.org/0000-0001-5191-4628</orcidid><orcidid>https://orcid.org/0000-0002-3732-3781</orcidid><orcidid>https://orcid.org/0000-0002-0061-2168</orcidid><orcidid>https://orcid.org/0000-0001-8079-6915</orcidid></search><sort><creationdate>20210902</creationdate><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><author>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Autophagy - physiology</topic><topic>Cells, Cultured</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Insulin signaling</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>mitophagy</topic><topic>Mitophagy - genetics</topic><topic>MTOR</topic><topic>muscle</topic><topic>Muscle Cells - metabolism</topic><topic>Nix</topic><topic>Phosphorylation</topic><topic>PKA</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Research Paper</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Rosa, Simone C.</creatorcontrib><creatorcontrib>Martens, Matthew D.</creatorcontrib><creatorcontrib>Field, Jared T.</creatorcontrib><creatorcontrib>Nguyen, Lucas</creatorcontrib><creatorcontrib>Kereliuk, Stephanie M.</creatorcontrib><creatorcontrib>Hai, Yan</creatorcontrib><creatorcontrib>Chapman, Donald</creatorcontrib><creatorcontrib>Diehl-Jones, William</creatorcontrib><creatorcontrib>Aliani, Michel</creatorcontrib><creatorcontrib>West, Adrian R.</creatorcontrib><creatorcontrib>Thliveris, James</creatorcontrib><creatorcontrib>Ghavami, Saeid</creatorcontrib><creatorcontrib>Rampitsch, Christof</creatorcontrib><creatorcontrib>Dolinsky, Vernon W.</creatorcontrib><creatorcontrib>Gordon, Joseph W.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Rosa, Simone C.</au><au>Martens, Matthew D.</au><au>Field, Jared T.</au><au>Nguyen, Lucas</au><au>Kereliuk, Stephanie M.</au><au>Hai, Yan</au><au>Chapman, Donald</au><au>Diehl-Jones, William</au><au>Aliani, Michel</au><au>West, Adrian R.</au><au>Thliveris, James</au><au>Ghavami, Saeid</au><au>Rampitsch, Christof</au><au>Dolinsky, Vernon W.</au><au>Gordon, Joseph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2021-09-02</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>2257</spage><epage>2272</epage><pages>2257-2272</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance. Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>33044904</pmid><doi>10.1080/15548627.2020.1821548</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1309-8225</orcidid><orcidid>https://orcid.org/0000-0001-5948-508X</orcidid><orcidid>https://orcid.org/0000-0001-9251-6693</orcidid><orcidid>https://orcid.org/0000-0001-5191-4628</orcidid><orcidid>https://orcid.org/0000-0002-3732-3781</orcidid><orcidid>https://orcid.org/0000-0002-0061-2168</orcidid><orcidid>https://orcid.org/0000-0001-8079-6915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2021-09, Vol.17 (9), p.2257-2272
issn 1554-8627
1554-8635
language eng
recordid cdi_pubmed_primary_33044904
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Autophagy - physiology
Cells, Cultured
Glucose - metabolism
Humans
Insulin signaling
Membrane Proteins - metabolism
mitochondria
Mitochondrial Dynamics
Mitochondrial Proteins - metabolism
mitophagy
Mitophagy - genetics
MTOR
muscle
Muscle Cells - metabolism
Nix
Phosphorylation
PKA
Proto-Oncogene Proteins - metabolism
Research Paper
Tumor Suppressor Proteins - metabolism
title BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BNIP3L/Nix-induced%20mitochondrial%20fission,%20mitophagy,%20and%20impaired%20myocyte%20glucose%20uptake%20are%20abrogated%20by%20PRKA/PKA%20phosphorylation&rft.jtitle=Autophagy&rft.au=da%20Silva%20Rosa,%20Simone%20C.&rft.date=2021-09-02&rft.volume=17&rft.issue=9&rft.spage=2257&rft.epage=2272&rft.pages=2257-2272&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2020.1821548&rft_dat=%3Cproquest_pubme%3E2450654827%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450654827&rft_id=info:pmid/33044904&rfr_iscdi=true