BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation
Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feed...
Gespeichert in:
Veröffentlicht in: | Autophagy 2021-09, Vol.17 (9), p.2257-2272 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2272 |
---|---|
container_issue | 9 |
container_start_page | 2257 |
container_title | Autophagy |
container_volume | 17 |
creator | da Silva Rosa, Simone C. Martens, Matthew D. Field, Jared T. Nguyen, Lucas Kereliuk, Stephanie M. Hai, Yan Chapman, Donald Diehl-Jones, William Aliani, Michel West, Adrian R. Thliveris, James Ghavami, Saeid Rampitsch, Christof Dolinsky, Vernon W. Gordon, Joseph W. |
description | Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.
Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; |
doi_str_mv | 10.1080/15548627.2020.1821548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33044904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450654827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEYj_gJ4By5LDZ-jvuBVFWfKy2WioEZ2tqO60hsbN2ApsrvxyXdiu4cBh5ZvzOO7aeoniB0SVGEs0w50wKUl8SRHJLEpzrR8Xprl9JQfnjY07qk-IspW8IUSHn5GlxQilibI7YafHr7e31ii5nt-6-ct6M2pqyc0PQ2-BNdNCWjUvJBX_xp91vYTNdlOBN6boeXNzJp6CnwZabdtQh2XLsB_huS4g51jFsYMii9VSuPt8sZqubRdlvQ8oRpxaG7PyseNJAm-zzw3lefH3_7svVx2r56cP11WJZaSbkUHEstW5oMzey1hZ4_pyoa0tziozBGJghwtIG23pNGOKCc8qYIARTgowAel683vv247qzRls_RGhVH10HcVIBnPr3xrut2oQfSrK5qDHPBq8OBjHcjTYNqnNJ27YFb8OYFGEciUyB1FnK91IdQ0rRNsc1GKkdP_XAT-34qQO_PPfy7zcepx6AZcGbvcD5JsQOfobYGjXA1IbYRPDaJUX_v-M3vV6sCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450654827</pqid></control><display><type>article</type><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</creator><creatorcontrib>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</creatorcontrib><description>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.
Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2020.1821548</identifier><identifier>PMID: 33044904</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; Autophagy - physiology ; Cells, Cultured ; Glucose - metabolism ; Humans ; Insulin signaling ; Membrane Proteins - metabolism ; mitochondria ; Mitochondrial Dynamics ; Mitochondrial Proteins - metabolism ; mitophagy ; Mitophagy - genetics ; MTOR ; muscle ; Muscle Cells - metabolism ; Nix ; Phosphorylation ; PKA ; Proto-Oncogene Proteins - metabolism ; Research Paper ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Autophagy, 2021-09, Vol.17 (9), p.2257-2272</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</citedby><cites>FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</cites><orcidid>0000-0002-1309-8225 ; 0000-0001-5948-508X ; 0000-0001-9251-6693 ; 0000-0001-5191-4628 ; 0000-0002-3732-3781 ; 0000-0002-0061-2168 ; 0000-0001-8079-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496715/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496715/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva Rosa, Simone C.</creatorcontrib><creatorcontrib>Martens, Matthew D.</creatorcontrib><creatorcontrib>Field, Jared T.</creatorcontrib><creatorcontrib>Nguyen, Lucas</creatorcontrib><creatorcontrib>Kereliuk, Stephanie M.</creatorcontrib><creatorcontrib>Hai, Yan</creatorcontrib><creatorcontrib>Chapman, Donald</creatorcontrib><creatorcontrib>Diehl-Jones, William</creatorcontrib><creatorcontrib>Aliani, Michel</creatorcontrib><creatorcontrib>West, Adrian R.</creatorcontrib><creatorcontrib>Thliveris, James</creatorcontrib><creatorcontrib>Ghavami, Saeid</creatorcontrib><creatorcontrib>Rampitsch, Christof</creatorcontrib><creatorcontrib>Dolinsky, Vernon W.</creatorcontrib><creatorcontrib>Gordon, Joseph W.</creatorcontrib><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.
Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</description><subject>Animals</subject><subject>Autophagy - physiology</subject><subject>Cells, Cultured</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Insulin signaling</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>mitophagy</subject><subject>Mitophagy - genetics</subject><subject>MTOR</subject><subject>muscle</subject><subject>Muscle Cells - metabolism</subject><subject>Nix</subject><subject>Phosphorylation</subject><subject>PKA</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Research Paper</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU2P0zAQhiMEYj_gJ4By5LDZ-jvuBVFWfKy2WioEZ2tqO60hsbN2ApsrvxyXdiu4cBh5ZvzOO7aeoniB0SVGEs0w50wKUl8SRHJLEpzrR8Xprl9JQfnjY07qk-IspW8IUSHn5GlxQilibI7YafHr7e31ii5nt-6-ct6M2pqyc0PQ2-BNdNCWjUvJBX_xp91vYTNdlOBN6boeXNzJp6CnwZabdtQh2XLsB_huS4g51jFsYMii9VSuPt8sZqubRdlvQ8oRpxaG7PyseNJAm-zzw3lefH3_7svVx2r56cP11WJZaSbkUHEstW5oMzey1hZ4_pyoa0tziozBGJghwtIG23pNGOKCc8qYIARTgowAel683vv247qzRls_RGhVH10HcVIBnPr3xrut2oQfSrK5qDHPBq8OBjHcjTYNqnNJ27YFb8OYFGEciUyB1FnK91IdQ0rRNsc1GKkdP_XAT-34qQO_PPfy7zcepx6AZcGbvcD5JsQOfobYGjXA1IbYRPDaJUX_v-M3vV6sCQ</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>da Silva Rosa, Simone C.</creator><creator>Martens, Matthew D.</creator><creator>Field, Jared T.</creator><creator>Nguyen, Lucas</creator><creator>Kereliuk, Stephanie M.</creator><creator>Hai, Yan</creator><creator>Chapman, Donald</creator><creator>Diehl-Jones, William</creator><creator>Aliani, Michel</creator><creator>West, Adrian R.</creator><creator>Thliveris, James</creator><creator>Ghavami, Saeid</creator><creator>Rampitsch, Christof</creator><creator>Dolinsky, Vernon W.</creator><creator>Gordon, Joseph W.</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1309-8225</orcidid><orcidid>https://orcid.org/0000-0001-5948-508X</orcidid><orcidid>https://orcid.org/0000-0001-9251-6693</orcidid><orcidid>https://orcid.org/0000-0001-5191-4628</orcidid><orcidid>https://orcid.org/0000-0002-3732-3781</orcidid><orcidid>https://orcid.org/0000-0002-0061-2168</orcidid><orcidid>https://orcid.org/0000-0001-8079-6915</orcidid></search><sort><creationdate>20210902</creationdate><title>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</title><author>da Silva Rosa, Simone C. ; Martens, Matthew D. ; Field, Jared T. ; Nguyen, Lucas ; Kereliuk, Stephanie M. ; Hai, Yan ; Chapman, Donald ; Diehl-Jones, William ; Aliani, Michel ; West, Adrian R. ; Thliveris, James ; Ghavami, Saeid ; Rampitsch, Christof ; Dolinsky, Vernon W. ; Gordon, Joseph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-518ccf3f9d87cea5155677e3ea50dd11a4d26e3f1e7b24056553446221320d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Autophagy - physiology</topic><topic>Cells, Cultured</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Insulin signaling</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>mitophagy</topic><topic>Mitophagy - genetics</topic><topic>MTOR</topic><topic>muscle</topic><topic>Muscle Cells - metabolism</topic><topic>Nix</topic><topic>Phosphorylation</topic><topic>PKA</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Research Paper</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Rosa, Simone C.</creatorcontrib><creatorcontrib>Martens, Matthew D.</creatorcontrib><creatorcontrib>Field, Jared T.</creatorcontrib><creatorcontrib>Nguyen, Lucas</creatorcontrib><creatorcontrib>Kereliuk, Stephanie M.</creatorcontrib><creatorcontrib>Hai, Yan</creatorcontrib><creatorcontrib>Chapman, Donald</creatorcontrib><creatorcontrib>Diehl-Jones, William</creatorcontrib><creatorcontrib>Aliani, Michel</creatorcontrib><creatorcontrib>West, Adrian R.</creatorcontrib><creatorcontrib>Thliveris, James</creatorcontrib><creatorcontrib>Ghavami, Saeid</creatorcontrib><creatorcontrib>Rampitsch, Christof</creatorcontrib><creatorcontrib>Dolinsky, Vernon W.</creatorcontrib><creatorcontrib>Gordon, Joseph W.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Rosa, Simone C.</au><au>Martens, Matthew D.</au><au>Field, Jared T.</au><au>Nguyen, Lucas</au><au>Kereliuk, Stephanie M.</au><au>Hai, Yan</au><au>Chapman, Donald</au><au>Diehl-Jones, William</au><au>Aliani, Michel</au><au>West, Adrian R.</au><au>Thliveris, James</au><au>Ghavami, Saeid</au><au>Rampitsch, Christof</au><au>Dolinsky, Vernon W.</au><au>Gordon, Joseph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2021-09-02</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>2257</spage><epage>2272</epage><pages>2257-2272</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.
Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3β: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>33044904</pmid><doi>10.1080/15548627.2020.1821548</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1309-8225</orcidid><orcidid>https://orcid.org/0000-0001-5948-508X</orcidid><orcidid>https://orcid.org/0000-0001-9251-6693</orcidid><orcidid>https://orcid.org/0000-0001-5191-4628</orcidid><orcidid>https://orcid.org/0000-0002-3732-3781</orcidid><orcidid>https://orcid.org/0000-0002-0061-2168</orcidid><orcidid>https://orcid.org/0000-0001-8079-6915</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8627 |
ispartof | Autophagy, 2021-09, Vol.17 (9), p.2257-2272 |
issn | 1554-8627 1554-8635 |
language | eng |
recordid | cdi_pubmed_primary_33044904 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Autophagy - physiology Cells, Cultured Glucose - metabolism Humans Insulin signaling Membrane Proteins - metabolism mitochondria Mitochondrial Dynamics Mitochondrial Proteins - metabolism mitophagy Mitophagy - genetics MTOR muscle Muscle Cells - metabolism Nix Phosphorylation PKA Proto-Oncogene Proteins - metabolism Research Paper Tumor Suppressor Proteins - metabolism |
title | BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BNIP3L/Nix-induced%20mitochondrial%20fission,%20mitophagy,%20and%20impaired%20myocyte%20glucose%20uptake%20are%20abrogated%20by%20PRKA/PKA%20phosphorylation&rft.jtitle=Autophagy&rft.au=da%20Silva%20Rosa,%20Simone%20C.&rft.date=2021-09-02&rft.volume=17&rft.issue=9&rft.spage=2257&rft.epage=2272&rft.pages=2257-2272&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2020.1821548&rft_dat=%3Cproquest_pubme%3E2450654827%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450654827&rft_id=info:pmid/33044904&rfr_iscdi=true |