Learning Common Harmonic Waves on Stiefel Manifold - A New Mathematical Approach for Brain Network Analyses
Converging evidence shows that disease-relevant brain alterations do not appear in random brain locations, instead, their spatial patterns follow large-scale brain networks. In this context, a powerful network analysis approach with a mathematical foundation is indispensable to understand the mechan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-01, Vol.40 (1), p.419-430 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Converging evidence shows that disease-relevant brain alterations do not appear in random brain locations, instead, their spatial patterns follow large-scale brain networks. In this context, a powerful network analysis approach with a mathematical foundation is indispensable to understand the mechanisms of neuropathological events as they spread through the brain. Indeed, the topology of each brain network is governed by its native harmonic waves, which are a set of orthogonal bases derived from the Eigen-system of the underlying Laplacian matrix. To that end, we propose a novel connectome harmonic analysis framework that provides enhanced mathematical insights by detecting frequency-based alterations relevant to brain disorders. The backbone of our framework is a novel manifold algebra appropriate for inference across harmonic waves. This algebra overcomes the limitations of using classic Euclidean operations on irregular data structures. The individual harmonic differences are measured by a set of common harmonic waves learned from a population of individual Eigen-systems, where each native Eigen-system is regarded as a sample drawn from the Stiefel manifold. Specifically, a manifold optimization scheme is tailored to find the common harmonic waves, which reside at the center of the Stiefel manifold. To that end, the common harmonic waves constitute a new set of neurobiological bases to understand disease progression. Each harmonic wave exhibits a unique propagation pattern of neuropathological burden spreading across brain networks. The statistical power of our novel connectome harmonic analysis approach is evaluated by identifying frequency-based alterations relevant to Alzheimer's disease, where our learning-based manifold approach discovers more significant and reproducible network dysfunction patterns than Euclidean methods. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2020.3029063 |