Data for training and testing radiation detection algorithms in an urban environment

The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-10, Vol.7 (1), p.328, Article 328
Hauptverfasser: Ghawaly, James M., Nicholson, Andrew D., Peplow, Douglas E., Anderson-Cook, Christine M., Myers, Kary L., Archer, Daniel E., Willis, Michael J., Quiter, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 328
container_title Scientific data
container_volume 7
creator Ghawaly, James M.
Nicholson, Andrew D.
Peplow, Douglas E.
Anderson-Cook, Christine M.
Myers, Kary L.
Archer, Daniel E.
Willis, Michael J.
Quiter, Brian J.
description The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background. Measurement(s) gamma ray photon detection events • radiation detection data Technology Type(s) Monte Carlo particle transport model • computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location State of Tennessee Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12654065
doi_str_mv 10.1038/s41597-020-00672-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33020490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-4e7606b05c175095b1c93e278e624de2d9f9e722babb28c6592fa599838a1f9e3</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIREt-gAMawXmg3bbH4wsSCk8pEpdwtjwez66jXTvY3kj8PZ1MCOHCxW6rq6tcXYy95PCWgxjfVcmV0T0g9ACDxh6fsFMEhb2Ug3j6qD5hZ7VeAQAXEpSG5-xECJqTBk7Z5UfXXLfk0rXiYopp27k0dy3UdlsXN0fXYk7dHFrwd5Xbb3OJbXeoXaRX6o5lojOkm1hyOoTUXrBni9vXcHZ_b9iPz58uz7_2F9-_fDv_cNF7Bbz1MugBhgmU51qBURP3RgTUYxhQzgFns5igESc3TTj6QRlcnDJmFKPj1BIb9n7lvT5OhzB7ki5ub69LPLjyy2YX7b-dFHd2m2-sVmJA2seGvV4JMtm11UfyuPM5JbJqueYCCblhb-5VSv55pMXYq3wsiYxZlNJIxREHQuGK8iXXWsLy8A0O9jYxuyZmafP2LjGLNPTqsYGHkT_5EECsgEqttA3lr_Z_aH8DcK2hbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451226</pqid></control><display><type>article</type><title>Data for training and testing radiation detection algorithms in an urban environment</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</creator><creatorcontrib>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background. Measurement(s) gamma ray photon detection events • radiation detection data Technology Type(s) Monte Carlo particle transport model • computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location State of Tennessee Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12654065</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-020-00672-2</identifier><identifier>PMID: 33020490</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1046 ; 639/766/387/1126 ; 639/766/930/12 ; Algorithms ; Computer applications ; Data Descriptor ; Humanities and Social Sciences ; Localization ; multidisciplinary ; NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION ; Radioisotopes ; Science ; Science (multidisciplinary) ; Urban environments</subject><ispartof>Scientific data, 2020-10, Vol.7 (1), p.328, Article 328</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-4e7606b05c175095b1c93e278e624de2d9f9e722babb28c6592fa599838a1f9e3</citedby><cites>FETCH-LOGICAL-c501t-4e7606b05c175095b1c93e278e624de2d9f9e722babb28c6592fa599838a1f9e3</cites><orcidid>0000-0001-8826-8500 ; 0000000188268500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536201/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536201/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33020490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1713275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Data for training and testing radiation detection algorithms in an urban environment</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background. Measurement(s) gamma ray photon detection events • radiation detection data Technology Type(s) Monte Carlo particle transport model • computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location State of Tennessee Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12654065</description><subject>639/705/1046</subject><subject>639/766/387/1126</subject><subject>639/766/930/12</subject><subject>Algorithms</subject><subject>Computer applications</subject><subject>Data Descriptor</subject><subject>Humanities and Social Sciences</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><subject>Radioisotopes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Urban environments</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctuFDEQtBCIREt-gAMawXmg3bbH4wsSCk8pEpdwtjwez66jXTvY3kj8PZ1MCOHCxW6rq6tcXYy95PCWgxjfVcmV0T0g9ACDxh6fsFMEhb2Ug3j6qD5hZ7VeAQAXEpSG5-xECJqTBk7Z5UfXXLfk0rXiYopp27k0dy3UdlsXN0fXYk7dHFrwd5Xbb3OJbXeoXaRX6o5lojOkm1hyOoTUXrBni9vXcHZ_b9iPz58uz7_2F9-_fDv_cNF7Bbz1MugBhgmU51qBURP3RgTUYxhQzgFns5igESc3TTj6QRlcnDJmFKPj1BIb9n7lvT5OhzB7ki5ub69LPLjyy2YX7b-dFHd2m2-sVmJA2seGvV4JMtm11UfyuPM5JbJqueYCCblhb-5VSv55pMXYq3wsiYxZlNJIxREHQuGK8iXXWsLy8A0O9jYxuyZmafP2LjGLNPTqsYGHkT_5EECsgEqttA3lr_Z_aH8DcK2hbw</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ghawaly, James M.</creator><creator>Nicholson, Andrew D.</creator><creator>Peplow, Douglas E.</creator><creator>Anderson-Cook, Christine M.</creator><creator>Myers, Kary L.</creator><creator>Archer, Daniel E.</creator><creator>Willis, Michael J.</creator><creator>Quiter, Brian J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8826-8500</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid></search><sort><creationdate>20201005</creationdate><title>Data for training and testing radiation detection algorithms in an urban environment</title><author>Ghawaly, James M. ; Nicholson, Andrew D. ; Peplow, Douglas E. ; Anderson-Cook, Christine M. ; Myers, Kary L. ; Archer, Daniel E. ; Willis, Michael J. ; Quiter, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-4e7606b05c175095b1c93e278e624de2d9f9e722babb28c6592fa599838a1f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705/1046</topic><topic>639/766/387/1126</topic><topic>639/766/930/12</topic><topic>Algorithms</topic><topic>Computer applications</topic><topic>Data Descriptor</topic><topic>Humanities and Social Sciences</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</topic><topic>Radioisotopes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghawaly, James M.</creatorcontrib><creatorcontrib>Nicholson, Andrew D.</creatorcontrib><creatorcontrib>Peplow, Douglas E.</creatorcontrib><creatorcontrib>Anderson-Cook, Christine M.</creatorcontrib><creatorcontrib>Myers, Kary L.</creatorcontrib><creatorcontrib>Archer, Daniel E.</creatorcontrib><creatorcontrib>Willis, Michael J.</creatorcontrib><creatorcontrib>Quiter, Brian J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghawaly, James M.</au><au>Nicholson, Andrew D.</au><au>Peplow, Douglas E.</au><au>Anderson-Cook, Christine M.</au><au>Myers, Kary L.</au><au>Archer, Daniel E.</au><au>Willis, Michael J.</au><au>Quiter, Brian J.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data for training and testing radiation detection algorithms in an urban environment</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2020-10-05</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>328</spage><pages>328-</pages><artnum>328</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background. Measurement(s) gamma ray photon detection events • radiation detection data Technology Type(s) Monte Carlo particle transport model • computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location State of Tennessee Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12654065</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33020490</pmid><doi>10.1038/s41597-020-00672-2</doi><orcidid>https://orcid.org/0000-0001-8826-8500</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2020-10, Vol.7 (1), p.328, Article 328
issn 2052-4463
2052-4463
language eng
recordid cdi_pubmed_primary_33020490
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 639/705/1046
639/766/387/1126
639/766/930/12
Algorithms
Computer applications
Data Descriptor
Humanities and Social Sciences
Localization
multidisciplinary
NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION
Radioisotopes
Science
Science (multidisciplinary)
Urban environments
title Data for training and testing radiation detection algorithms in an urban environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20for%20training%20and%20testing%20radiation%20detection%20algorithms%20in%20an%20urban%20environment&rft.jtitle=Scientific%20data&rft.au=Ghawaly,%20James%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-10-05&rft.volume=7&rft.issue=1&rft.spage=328&rft.pages=328-&rft.artnum=328&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-020-00672-2&rft_dat=%3Cproquest_pubme%3E2449451226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451226&rft_id=info:pmid/33020490&rfr_iscdi=true