Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images

Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2020-11, Vol.65 (22), p.225027-225027
Hauptverfasser: Hariharan, Sai Gokul, Strobel, Norbert, Kaethner, Christian, Kowarschik, Markus, Fahrig, Rebecca, Navab, Nassir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225027
container_issue 22
container_start_page 225027
container_title Physics in medicine & biology
container_volume 65
creator Hariharan, Sai Gokul
Strobel, Norbert
Kaethner, Christian
Kowarschik, Markus
Fahrig, Rebecca
Navab, Nassir
description Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throughout the image, facilitating the application of denoising algorithms designed for the removal of additive Gaussian noise. A well-performing NVS is the generalized Anscombe transform (GAT). To calculate the GAT, the system gain as well as the variance of electronic noise are required. Unfortunately, these parameters are difficult to predict from the x-ray tube settings in clinical practice, because the system gain observed at the detector depends on the beam hardening caused by the patient. Materials and Methods. We propose a data-driven method for estimating the parameters required to carry out an NVS using the GAT. It utilizes the energy compaction property of the discrete cosine transform to obtain the NVS parameters using a robust regression approach relying on a linear Poisson-Gaussian model. The method has been experimentally validated with respect to beam hardening as well as denoising performance for different dose and scatter levels. Results. Across a range of low-dose x-ray settings, the proposed robust regression approach has estimated both system gain and electronic noise level with an average error of only 4.2%. When used to perform a GAT followed by the denoising of low-dose x-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can be obtained. Conclusion. The parameters needed to calculate the GAT can be estimated efficiently and robustly using a data-driven approach. The improved parameter estimation method facilitates a more accurate GAT-based NVS and, hence, better denoising of low-dose x-ray images when algorithms designed for additive Gaussian noise are applied.
doi_str_mv 10.1088/1361-6560/abbc82
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32992305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447544734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-d4797870ab787e84f0e405f8b5ca4926d5ed589f3f76e32c35666444a6e50c603</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOo7uXUmXs7Cad9uljE8Q3OjKRUjbG4m0TU3a0fHXm6E6KxGSXEjO_cg9CJ0QfE5wnl8QJkkqhcQXuiyrnO6g2fZqF80wZiQtiBAH6DCEN4wJySnfRweMFgVlWMzQy5UedFp7u4IugTDYVg_WdYkzSedsgGSlvdVdBUkYdGkb-zW999rrFgbwITHOJ437SGsX8c_U63USU14hHKE9o5sAxz91jp5vrp-Wd-nD4-398vIhrZgshrTmWZHlGdZlPCHnBgPHwuSlqDQvqKwF1CIvDDOZBEYrJqSUnHMtQeBKYjZHiym39-59jEOo1oYKmkZ34MagKOeZiJvxiOIJrbwLwYNRvY-f9WtFsNooVRt_auNPTUpjy-lP-li2UG8bfh1G4GwCrOvVmxt9F4f9L2_xB963ZaQUpXEJTDPV14Z9AxMJja4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447544734</pqid></control><display><type>article</type><title>Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hariharan, Sai Gokul ; Strobel, Norbert ; Kaethner, Christian ; Kowarschik, Markus ; Fahrig, Rebecca ; Navab, Nassir</creator><creatorcontrib>Hariharan, Sai Gokul ; Strobel, Norbert ; Kaethner, Christian ; Kowarschik, Markus ; Fahrig, Rebecca ; Navab, Nassir</creatorcontrib><description>Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throughout the image, facilitating the application of denoising algorithms designed for the removal of additive Gaussian noise. A well-performing NVS is the generalized Anscombe transform (GAT). To calculate the GAT, the system gain as well as the variance of electronic noise are required. Unfortunately, these parameters are difficult to predict from the x-ray tube settings in clinical practice, because the system gain observed at the detector depends on the beam hardening caused by the patient. Materials and Methods. We propose a data-driven method for estimating the parameters required to carry out an NVS using the GAT. It utilizes the energy compaction property of the discrete cosine transform to obtain the NVS parameters using a robust regression approach relying on a linear Poisson-Gaussian model. The method has been experimentally validated with respect to beam hardening as well as denoising performance for different dose and scatter levels. Results. Across a range of low-dose x-ray settings, the proposed robust regression approach has estimated both system gain and electronic noise level with an average error of only 4.2%. When used to perform a GAT followed by the denoising of low-dose x-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can be obtained. Conclusion. The parameters needed to calculate the GAT can be estimated efficiently and robustly using a data-driven approach. The improved parameter estimation method facilitates a more accurate GAT-based NVS and, hence, better denoising of low-dose x-ray images when algorithms designed for additive Gaussian noise are applied.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/abbc82</identifier><identifier>PMID: 32992305</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; low-dose x-ray imaging ; noise level function estimation ; noise variance stabilization ; Normal Distribution ; Radiography ; Signal-To-Noise Ratio</subject><ispartof>Physics in medicine &amp; biology, 2020-11, Vol.65 (22), p.225027-225027</ispartof><rights>2020 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-d4797870ab787e84f0e405f8b5ca4926d5ed589f3f76e32c35666444a6e50c603</citedby><cites>FETCH-LOGICAL-c369t-d4797870ab787e84f0e405f8b5ca4926d5ed589f3f76e32c35666444a6e50c603</cites><orcidid>0000-0002-4446-6799 ; 0000-0001-7319-799X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/abbc82/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32992305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hariharan, Sai Gokul</creatorcontrib><creatorcontrib>Strobel, Norbert</creatorcontrib><creatorcontrib>Kaethner, Christian</creatorcontrib><creatorcontrib>Kowarschik, Markus</creatorcontrib><creatorcontrib>Fahrig, Rebecca</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><title>Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throughout the image, facilitating the application of denoising algorithms designed for the removal of additive Gaussian noise. A well-performing NVS is the generalized Anscombe transform (GAT). To calculate the GAT, the system gain as well as the variance of electronic noise are required. Unfortunately, these parameters are difficult to predict from the x-ray tube settings in clinical practice, because the system gain observed at the detector depends on the beam hardening caused by the patient. Materials and Methods. We propose a data-driven method for estimating the parameters required to carry out an NVS using the GAT. It utilizes the energy compaction property of the discrete cosine transform to obtain the NVS parameters using a robust regression approach relying on a linear Poisson-Gaussian model. The method has been experimentally validated with respect to beam hardening as well as denoising performance for different dose and scatter levels. Results. Across a range of low-dose x-ray settings, the proposed robust regression approach has estimated both system gain and electronic noise level with an average error of only 4.2%. When used to perform a GAT followed by the denoising of low-dose x-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can be obtained. Conclusion. The parameters needed to calculate the GAT can be estimated efficiently and robustly using a data-driven approach. The improved parameter estimation method facilitates a more accurate GAT-based NVS and, hence, better denoising of low-dose x-ray images when algorithms designed for additive Gaussian noise are applied.</description><subject>Algorithms</subject><subject>low-dose x-ray imaging</subject><subject>noise level function estimation</subject><subject>noise variance stabilization</subject><subject>Normal Distribution</subject><subject>Radiography</subject><subject>Signal-To-Noise Ratio</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAURoMoOo7uXUmXs7Cad9uljE8Q3OjKRUjbG4m0TU3a0fHXm6E6KxGSXEjO_cg9CJ0QfE5wnl8QJkkqhcQXuiyrnO6g2fZqF80wZiQtiBAH6DCEN4wJySnfRweMFgVlWMzQy5UedFp7u4IugTDYVg_WdYkzSedsgGSlvdVdBUkYdGkb-zW999rrFgbwITHOJ437SGsX8c_U63USU14hHKE9o5sAxz91jp5vrp-Wd-nD4-398vIhrZgshrTmWZHlGdZlPCHnBgPHwuSlqDQvqKwF1CIvDDOZBEYrJqSUnHMtQeBKYjZHiym39-59jEOo1oYKmkZ34MagKOeZiJvxiOIJrbwLwYNRvY-f9WtFsNooVRt_auNPTUpjy-lP-li2UG8bfh1G4GwCrOvVmxt9F4f9L2_xB963ZaQUpXEJTDPV14Z9AxMJja4</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Hariharan, Sai Gokul</creator><creator>Strobel, Norbert</creator><creator>Kaethner, Christian</creator><creator>Kowarschik, Markus</creator><creator>Fahrig, Rebecca</creator><creator>Navab, Nassir</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4446-6799</orcidid><orcidid>https://orcid.org/0000-0001-7319-799X</orcidid></search><sort><creationdate>20201124</creationdate><title>Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images</title><author>Hariharan, Sai Gokul ; Strobel, Norbert ; Kaethner, Christian ; Kowarschik, Markus ; Fahrig, Rebecca ; Navab, Nassir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-d4797870ab787e84f0e405f8b5ca4926d5ed589f3f76e32c35666444a6e50c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>low-dose x-ray imaging</topic><topic>noise level function estimation</topic><topic>noise variance stabilization</topic><topic>Normal Distribution</topic><topic>Radiography</topic><topic>Signal-To-Noise Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hariharan, Sai Gokul</creatorcontrib><creatorcontrib>Strobel, Norbert</creatorcontrib><creatorcontrib>Kaethner, Christian</creatorcontrib><creatorcontrib>Kowarschik, Markus</creatorcontrib><creatorcontrib>Fahrig, Rebecca</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hariharan, Sai Gokul</au><au>Strobel, Norbert</au><au>Kaethner, Christian</au><au>Kowarschik, Markus</au><au>Fahrig, Rebecca</au><au>Navab, Nassir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>65</volume><issue>22</issue><spage>225027</spage><epage>225027</epage><pages>225027-225027</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throughout the image, facilitating the application of denoising algorithms designed for the removal of additive Gaussian noise. A well-performing NVS is the generalized Anscombe transform (GAT). To calculate the GAT, the system gain as well as the variance of electronic noise are required. Unfortunately, these parameters are difficult to predict from the x-ray tube settings in clinical practice, because the system gain observed at the detector depends on the beam hardening caused by the patient. Materials and Methods. We propose a data-driven method for estimating the parameters required to carry out an NVS using the GAT. It utilizes the energy compaction property of the discrete cosine transform to obtain the NVS parameters using a robust regression approach relying on a linear Poisson-Gaussian model. The method has been experimentally validated with respect to beam hardening as well as denoising performance for different dose and scatter levels. Results. Across a range of low-dose x-ray settings, the proposed robust regression approach has estimated both system gain and electronic noise level with an average error of only 4.2%. When used to perform a GAT followed by the denoising of low-dose x-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can be obtained. Conclusion. The parameters needed to calculate the GAT can be estimated efficiently and robustly using a data-driven approach. The improved parameter estimation method facilitates a more accurate GAT-based NVS and, hence, better denoising of low-dose x-ray images when algorithms designed for additive Gaussian noise are applied.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32992305</pmid><doi>10.1088/1361-6560/abbc82</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4446-6799</orcidid><orcidid>https://orcid.org/0000-0001-7319-799X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2020-11, Vol.65 (22), p.225027-225027
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_32992305
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
low-dose x-ray imaging
noise level function estimation
noise variance stabilization
Normal Distribution
Radiography
Signal-To-Noise Ratio
title Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20estimation%20of%20noise%20variance%20stabilization%20parameters%20for%20low-dose%20x-ray%20images&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Hariharan,%20Sai%20Gokul&rft.date=2020-11-24&rft.volume=65&rft.issue=22&rft.spage=225027&rft.epage=225027&rft.pages=225027-225027&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/abbc82&rft_dat=%3Cproquest_pubme%3E2447544734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447544734&rft_id=info:pmid/32992305&rfr_iscdi=true