Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro
Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explo...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-10, Vol.21 (19), p.7030, Article 7030 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 7030 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Lojk, Jasna Babic, Lea Susjan, Petra Bregar, Vladimir Bostjan Pavlin, Mojca Hafner-Bratkovic, Iva Veranic, Peter |
description | Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 mu g/mL) did not induce changes in cell viability, cytokine secretion or NF-kappa B activation of microglial cells, even low NP concentrations of 10 mu g/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs. |
doi_str_mv | 10.3390/ijms21197030 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32987760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642931572</galeid><doaj_id>oai_doaj_org_article_9ed2132182984edba5dae39876524700</doaj_id><sourcerecordid>A642931572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-960f853420dd681a2343f5d8553fff968d668b7372115e69ca95bc6895a78e33</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIREvhxhmtxBFS_LH-uiBFIUCkUi4VV8uxx6mjjR3sXaD_HjcbovaGLHnG43cezYymaV5jdEmpQh_CdlcIxkogip4057gjZIYQF08f-GfNi1K2CBFKmHrenFGipBAcnTdxHk1_V0Jpk2-HW2g_hQx2aE107Sq66bH0vpqD5NrEtDd5CLaHdvlnn8qYoU2x_RZsTps-mP6Qew1jThXdLqDvS0W1P8KQ08vmmTd9gVdHe9HcfF7eLL7Orr5_WS3mVzPLsBhmiiMvGe0Ico5LbAjtqGdOMka994pLx7lcCypq4wy4skaxteVSMSMkUHrRrCasS2ar9znsTL7TyQR9CKS80ccetAJHMCVY1pF04NaGOQO0jocz0gmEKuvjxNqP6x04C3HIpn8EffwTw63epF9asMpUpALeHgE5_RyhDHqbxlxnUzRhneSK1KuqLifVxtSqQvSpwmw9DnbBpgg-1Picd0RRzMQ99v2UUOdeSgZ_Kgkjfb8Z-uFmVPmbh22cxP9WoQrkJPgN6-SLDRAtnGQIISZ5h3FXPYQXYTBDSHGRxjjU1Hf_n0r_AlRw0_E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548692486</pqid></control><display><type>article</type><title>Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Lojk, Jasna ; Babic, Lea ; Susjan, Petra ; Bregar, Vladimir Bostjan ; Pavlin, Mojca ; Hafner-Bratkovic, Iva ; Veranic, Peter</creator><creatorcontrib>Lojk, Jasna ; Babic, Lea ; Susjan, Petra ; Bregar, Vladimir Bostjan ; Pavlin, Mojca ; Hafner-Bratkovic, Iva ; Veranic, Peter</creatorcontrib><description>Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 mu g/mL) did not induce changes in cell viability, cytokine secretion or NF-kappa B activation of microglial cells, even low NP concentrations of 10 mu g/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21197030</identifier><identifier>PMID: 32987760</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Animals ; Biochemistry & Molecular Biology ; Biocompatibility ; Brain ; Cell activation ; Cell culture ; Cell differentiation ; Cell Line ; Cell Survival - drug effects ; Cell viability ; Chemistry ; Chemistry, Multidisciplinary ; co-culture ; Cobalt ; Cobalt ferrites ; cytokine secretion ; Cytokines ; Cytokines - metabolism ; Exposure ; Health aspects ; Industrial development ; Life Sciences & Biomedicine ; Mice ; Microglia ; Microglia - cytology ; Microglia - drug effects ; nanoparticle ; Nanoparticles ; Nanoparticles - toxicity ; Neurons - cytology ; Neurons - drug effects ; Neurotoxicity ; NF-κB protein ; Physical Sciences ; Polyacrylic acid ; Proteins ; ROS ; Science & Technology ; Titanium dioxide ; Toxicity</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (19), p.7030, Article 7030</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586411400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c517t-960f853420dd681a2343f5d8553fff968d668b7372115e69ca95bc6895a78e33</citedby><cites>FETCH-LOGICAL-c517t-960f853420dd681a2343f5d8553fff968d668b7372115e69ca95bc6895a78e33</cites><orcidid>0000-0002-0133-9896 ; 0000-0001-5635-931X ; 0000-0001-5477-7833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582992/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582992/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32987760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lojk, Jasna</creatorcontrib><creatorcontrib>Babic, Lea</creatorcontrib><creatorcontrib>Susjan, Petra</creatorcontrib><creatorcontrib>Bregar, Vladimir Bostjan</creatorcontrib><creatorcontrib>Pavlin, Mojca</creatorcontrib><creatorcontrib>Hafner-Bratkovic, Iva</creatorcontrib><creatorcontrib>Veranic, Peter</creatorcontrib><title>Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 mu g/mL) did not induce changes in cell viability, cytokine secretion or NF-kappa B activation of microglial cells, even low NP concentrations of 10 mu g/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs.</description><subject>Animals</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biocompatibility</subject><subject>Brain</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>co-culture</subject><subject>Cobalt</subject><subject>Cobalt ferrites</subject><subject>cytokine secretion</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Exposure</subject><subject>Health aspects</subject><subject>Industrial development</subject><subject>Life Sciences & Biomedicine</subject><subject>Mice</subject><subject>Microglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>Nanoparticles - toxicity</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurotoxicity</subject><subject>NF-κB protein</subject><subject>Physical Sciences</subject><subject>Polyacrylic acid</subject><subject>Proteins</subject><subject>ROS</subject><subject>Science & Technology</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIREvhxhmtxBFS_LH-uiBFIUCkUi4VV8uxx6mjjR3sXaD_HjcbovaGLHnG43cezYymaV5jdEmpQh_CdlcIxkogip4057gjZIYQF08f-GfNi1K2CBFKmHrenFGipBAcnTdxHk1_V0Jpk2-HW2g_hQx2aE107Sq66bH0vpqD5NrEtDd5CLaHdvlnn8qYoU2x_RZsTps-mP6Qew1jThXdLqDvS0W1P8KQ08vmmTd9gVdHe9HcfF7eLL7Orr5_WS3mVzPLsBhmiiMvGe0Ico5LbAjtqGdOMka994pLx7lcCypq4wy4skaxteVSMSMkUHrRrCasS2ar9znsTL7TyQR9CKS80ccetAJHMCVY1pF04NaGOQO0jocz0gmEKuvjxNqP6x04C3HIpn8EffwTw63epF9asMpUpALeHgE5_RyhDHqbxlxnUzRhneSK1KuqLifVxtSqQvSpwmw9DnbBpgg-1Picd0RRzMQ99v2UUOdeSgZ_Kgkjfb8Z-uFmVPmbh22cxP9WoQrkJPgN6-SLDRAtnGQIISZ5h3FXPYQXYTBDSHGRxjjU1Hf_n0r_AlRw0_E</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lojk, Jasna</creator><creator>Babic, Lea</creator><creator>Susjan, Petra</creator><creator>Bregar, Vladimir Bostjan</creator><creator>Pavlin, Mojca</creator><creator>Hafner-Bratkovic, Iva</creator><creator>Veranic, Peter</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0133-9896</orcidid><orcidid>https://orcid.org/0000-0001-5635-931X</orcidid><orcidid>https://orcid.org/0000-0001-5477-7833</orcidid></search><sort><creationdate>20201001</creationdate><title>Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro</title><author>Lojk, Jasna ; Babic, Lea ; Susjan, Petra ; Bregar, Vladimir Bostjan ; Pavlin, Mojca ; Hafner-Bratkovic, Iva ; Veranic, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-960f853420dd681a2343f5d8553fff968d668b7372115e69ca95bc6895a78e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biocompatibility</topic><topic>Brain</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>co-culture</topic><topic>Cobalt</topic><topic>Cobalt ferrites</topic><topic>cytokine secretion</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Exposure</topic><topic>Health aspects</topic><topic>Industrial development</topic><topic>Life Sciences & Biomedicine</topic><topic>Mice</topic><topic>Microglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>Nanoparticles - toxicity</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurotoxicity</topic><topic>NF-κB protein</topic><topic>Physical Sciences</topic><topic>Polyacrylic acid</topic><topic>Proteins</topic><topic>ROS</topic><topic>Science & Technology</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lojk, Jasna</creatorcontrib><creatorcontrib>Babic, Lea</creatorcontrib><creatorcontrib>Susjan, Petra</creatorcontrib><creatorcontrib>Bregar, Vladimir Bostjan</creatorcontrib><creatorcontrib>Pavlin, Mojca</creatorcontrib><creatorcontrib>Hafner-Bratkovic, Iva</creatorcontrib><creatorcontrib>Veranic, Peter</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lojk, Jasna</au><au>Babic, Lea</au><au>Susjan, Petra</au><au>Bregar, Vladimir Bostjan</au><au>Pavlin, Mojca</au><au>Hafner-Bratkovic, Iva</au><au>Veranic, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>21</volume><issue>19</issue><spage>7030</spage><pages>7030-</pages><artnum>7030</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 mu g/mL) did not induce changes in cell viability, cytokine secretion or NF-kappa B activation of microglial cells, even low NP concentrations of 10 mu g/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32987760</pmid><doi>10.3390/ijms21197030</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0133-9896</orcidid><orcidid>https://orcid.org/0000-0001-5635-931X</orcidid><orcidid>https://orcid.org/0000-0001-5477-7833</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-10, Vol.21 (19), p.7030, Article 7030 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmed_primary_32987760 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Animals Biochemistry & Molecular Biology Biocompatibility Brain Cell activation Cell culture Cell differentiation Cell Line Cell Survival - drug effects Cell viability Chemistry Chemistry, Multidisciplinary co-culture Cobalt Cobalt ferrites cytokine secretion Cytokines Cytokines - metabolism Exposure Health aspects Industrial development Life Sciences & Biomedicine Mice Microglia Microglia - cytology Microglia - drug effects nanoparticle Nanoparticles Nanoparticles - toxicity Neurons - cytology Neurons - drug effects Neurotoxicity NF-κB protein Physical Sciences Polyacrylic acid Proteins ROS Science & Technology Titanium dioxide Toxicity |
title | Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Direct%20and%20Indirect%20Effects%20of%20Nanoparticle%20Exposure%20on%20Microglial%20and%20Neuronal%20Cells%20In%20Vitro&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lojk,%20Jasna&rft.date=2020-10-01&rft.volume=21&rft.issue=19&rft.spage=7030&rft.pages=7030-&rft.artnum=7030&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21197030&rft_dat=%3Cgale_pubme%3EA642931572%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548692486&rft_id=info:pmid/32987760&rft_galeid=A642931572&rft_doaj_id=oai_doaj_org_article_9ed2132182984edba5dae39876524700&rfr_iscdi=true |