Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence

During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2021-03, Vol.93 (3), p.1722-1731
Hauptverfasser: Pereson, Matías J., Mojsiejczuk, Laura, Martínez, Alfredo P., Flichman, Diego M., Garcia, Gabriel H., Di Lello, Federico A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1731
container_issue 3
container_start_page 1722
container_title Journal of medical virology
container_volume 93
creator Pereson, Matías J.
Mojsiejczuk, Laura
Martínez, Alfredo P.
Flichman, Diego M.
Garcia, Gabriel H.
Di Lello, Federico A.
description During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS‐CoV‐2. The molecular evolution in nine genomic regions of SARS‐CoV‐2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS‐CoV‐2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10−3 and 2.19 × 10−3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first‐time characterization of the evolutionary rate of S protein, crucial for vaccine development. Highlights ‐The phylogenetic signal of nine viral genomic regions was determined ‐Phylogenetic trees for each analyzed region were generated ‐Positions of amino acids with greater variations were detected ‐It was possible to identify regions revealing different levels of variability ‐The evolutionary rate was estimated to range from 1.37‐2.19 x10‐3 substitution/site/year
doi_str_mv 10.1002/jmv.26545
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32966646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481909733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5495-c7255055adb388b09cdb6fea002647d56160129295ad85a44ffa58760f55655a3</originalsourceid><addsrcrecordid>eNqNkcFOHCEcxklTU7fagy_QkPTUNKPAADNcmpiJ1hobTbf1ShgWXDYzYIHV7K2P0Gfsk4jd7cYemngBEn7fx_f_AOAAo0OMEDlajHeHhDPKXoAJRoJXAjX4JZggTHnFOWa74HVKC4RQKwh5BXZrIjjnlE_A9Gq-GsKN8SY7DZVXwyq5BIOF0-Ov098_f3XhuqwEOg_z3EDrYsrQmns4Bp_nCSbntYEuJ2hGE4uRNvtgx6ohmTebfQ98Pz351p1VF5efPnfHF5VmVLBKN4QxxJia9XXb9kjoWc-tUWUiTpsZ45gjTAQRhWiZotRaxdqGI8sYL7J6D3xc-94u-9HMtPE5qkHeRjequJJBOfnvjXdzeRPuZMPqBjNUDN5tDGL4sTQpy0VYxtJBkoS2WCDR1HWh3q8pHUNK0djtCxjJx_5l6V_-6b-wb59G2pJ_Cy_AhzVwb_pgk3aPhW2x8kOsDEh5W04IF7p9Pt25rLILvgtLn4v0aCN1g1n9P7I8_3K9zv4AqaOxZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481909733</pqid></control><display><type>article</type><title>Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Pereson, Matías J. ; Mojsiejczuk, Laura ; Martínez, Alfredo P. ; Flichman, Diego M. ; Garcia, Gabriel H. ; Di Lello, Federico A.</creator><creatorcontrib>Pereson, Matías J. ; Mojsiejczuk, Laura ; Martínez, Alfredo P. ; Flichman, Diego M. ; Garcia, Gabriel H. ; Di Lello, Federico A.</creatorcontrib><description>During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS‐CoV‐2. The molecular evolution in nine genomic regions of SARS‐CoV‐2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS‐CoV‐2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10−3 and 2.19 × 10−3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first‐time characterization of the evolutionary rate of S protein, crucial for vaccine development. Highlights ‐The phylogenetic signal of nine viral genomic regions was determined ‐Phylogenetic trees for each analyzed region were generated ‐Positions of amino acids with greater variations were detected ‐It was possible to identify regions revealing different levels of variability ‐The evolutionary rate was estimated to range from 1.37‐2.19 x10‐3 substitution/site/year</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.26545</identifier><identifier>PMID: 32966646</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Amino Acid Substitution - genetics ; Amino acids ; Animals ; Bayesian analysis ; Biological Evolution ; Chiroptera - virology ; Coronavirus Papain-Like Proteases - genetics ; Coronaviruses ; COVID-19 - pathology ; Evolution ; Evolution, Molecular ; evolutionary rate ; Genome, Viral - genetics ; Humans ; Life Sciences &amp; Biomedicine ; Molecular evolution ; Phylogenetics ; Phylogeny ; SARS-CoV-2 - genetics ; SARS‐CoV‐2 ; Science &amp; Technology ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus - genetics ; Substitutes ; Topology ; Vaccine development ; Vaccines ; Variability ; Viral diseases ; Virology ; Viruses</subject><ispartof>Journal of medical virology, 2021-03, Vol.93 (3), p.1722-1731</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576046800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5495-c7255055adb388b09cdb6fea002647d56160129295ad85a44ffa58760f55655a3</citedby><cites>FETCH-LOGICAL-c5495-c7255055adb388b09cdb6fea002647d56160129295ad85a44ffa58760f55655a3</cites><orcidid>0000-0001-9771-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.26545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.26545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32966646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereson, Matías J.</creatorcontrib><creatorcontrib>Mojsiejczuk, Laura</creatorcontrib><creatorcontrib>Martínez, Alfredo P.</creatorcontrib><creatorcontrib>Flichman, Diego M.</creatorcontrib><creatorcontrib>Garcia, Gabriel H.</creatorcontrib><creatorcontrib>Di Lello, Federico A.</creatorcontrib><title>Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence</title><title>Journal of medical virology</title><addtitle>J MED VIROL</addtitle><addtitle>J Med Virol</addtitle><description>During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS‐CoV‐2. The molecular evolution in nine genomic regions of SARS‐CoV‐2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS‐CoV‐2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10−3 and 2.19 × 10−3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first‐time characterization of the evolutionary rate of S protein, crucial for vaccine development. Highlights ‐The phylogenetic signal of nine viral genomic regions was determined ‐Phylogenetic trees for each analyzed region were generated ‐Positions of amino acids with greater variations were detected ‐It was possible to identify regions revealing different levels of variability ‐The evolutionary rate was estimated to range from 1.37‐2.19 x10‐3 substitution/site/year</description><subject>Amino Acid Substitution - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Biological Evolution</subject><subject>Chiroptera - virology</subject><subject>Coronavirus Papain-Like Proteases - genetics</subject><subject>Coronaviruses</subject><subject>COVID-19 - pathology</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>evolutionary rate</subject><subject>Genome, Viral - genetics</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Molecular evolution</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS‐CoV‐2</subject><subject>Science &amp; Technology</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Substitutes</subject><subject>Topology</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Variability</subject><subject>Viral diseases</subject><subject>Virology</subject><subject>Viruses</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcFOHCEcxklTU7fagy_QkPTUNKPAADNcmpiJ1hobTbf1ShgWXDYzYIHV7K2P0Gfsk4jd7cYemngBEn7fx_f_AOAAo0OMEDlajHeHhDPKXoAJRoJXAjX4JZggTHnFOWa74HVKC4RQKwh5BXZrIjjnlE_A9Gq-GsKN8SY7DZVXwyq5BIOF0-Ov098_f3XhuqwEOg_z3EDrYsrQmns4Bp_nCSbntYEuJ2hGE4uRNvtgx6ohmTebfQ98Pz351p1VF5efPnfHF5VmVLBKN4QxxJia9XXb9kjoWc-tUWUiTpsZ45gjTAQRhWiZotRaxdqGI8sYL7J6D3xc-94u-9HMtPE5qkHeRjequJJBOfnvjXdzeRPuZMPqBjNUDN5tDGL4sTQpy0VYxtJBkoS2WCDR1HWh3q8pHUNK0djtCxjJx_5l6V_-6b-wb59G2pJ_Cy_AhzVwb_pgk3aPhW2x8kOsDEh5W04IF7p9Pt25rLILvgtLn4v0aCN1g1n9P7I8_3K9zv4AqaOxZQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Pereson, Matías J.</creator><creator>Mojsiejczuk, Laura</creator><creator>Martínez, Alfredo P.</creator><creator>Flichman, Diego M.</creator><creator>Garcia, Gabriel H.</creator><creator>Di Lello, Federico A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9771-9705</orcidid></search><sort><creationdate>202103</creationdate><title>Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence</title><author>Pereson, Matías J. ; Mojsiejczuk, Laura ; Martínez, Alfredo P. ; Flichman, Diego M. ; Garcia, Gabriel H. ; Di Lello, Federico A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5495-c7255055adb388b09cdb6fea002647d56160129295ad85a44ffa58760f55655a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Biological Evolution</topic><topic>Chiroptera - virology</topic><topic>Coronavirus Papain-Like Proteases - genetics</topic><topic>Coronaviruses</topic><topic>COVID-19 - pathology</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>evolutionary rate</topic><topic>Genome, Viral - genetics</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Molecular evolution</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS‐CoV‐2</topic><topic>Science &amp; Technology</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Substitutes</topic><topic>Topology</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Variability</topic><topic>Viral diseases</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereson, Matías J.</creatorcontrib><creatorcontrib>Mojsiejczuk, Laura</creatorcontrib><creatorcontrib>Martínez, Alfredo P.</creatorcontrib><creatorcontrib>Flichman, Diego M.</creatorcontrib><creatorcontrib>Garcia, Gabriel H.</creatorcontrib><creatorcontrib>Di Lello, Federico A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereson, Matías J.</au><au>Mojsiejczuk, Laura</au><au>Martínez, Alfredo P.</au><au>Flichman, Diego M.</au><au>Garcia, Gabriel H.</au><au>Di Lello, Federico A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence</atitle><jtitle>Journal of medical virology</jtitle><stitle>J MED VIROL</stitle><addtitle>J Med Virol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>93</volume><issue>3</issue><spage>1722</spage><epage>1731</epage><pages>1722-1731</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS‐CoV‐2. The molecular evolution in nine genomic regions of SARS‐CoV‐2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS‐CoV‐2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10−3 and 2.19 × 10−3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first‐time characterization of the evolutionary rate of S protein, crucial for vaccine development. Highlights ‐The phylogenetic signal of nine viral genomic regions was determined ‐Phylogenetic trees for each analyzed region were generated ‐Positions of amino acids with greater variations were detected ‐It was possible to identify regions revealing different levels of variability ‐The evolutionary rate was estimated to range from 1.37‐2.19 x10‐3 substitution/site/year</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32966646</pmid><doi>10.1002/jmv.26545</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9771-9705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6615
ispartof Journal of medical virology, 2021-03, Vol.93 (3), p.1722-1731
issn 0146-6615
1096-9071
language eng
recordid cdi_pubmed_primary_32966646
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Amino Acid Substitution - genetics
Amino acids
Animals
Bayesian analysis
Biological Evolution
Chiroptera - virology
Coronavirus Papain-Like Proteases - genetics
Coronaviruses
COVID-19 - pathology
Evolution
Evolution, Molecular
evolutionary rate
Genome, Viral - genetics
Humans
Life Sciences & Biomedicine
Molecular evolution
Phylogenetics
Phylogeny
SARS-CoV-2 - genetics
SARS‐CoV‐2
Science & Technology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - genetics
Substitutes
Topology
Vaccine development
Vaccines
Variability
Viral diseases
Virology
Viruses
title Phylogenetic analysis of SARS‐CoV‐2 in the first few months since its emergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogenetic%20analysis%20of%20SARS%E2%80%90CoV%E2%80%902%20in%20the%20first%20few%20months%20since%20its%20emergence&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Pereson,%20Mat%C3%ADas%20J.&rft.date=2021-03&rft.volume=93&rft.issue=3&rft.spage=1722&rft.epage=1731&rft.pages=1722-1731&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.26545&rft_dat=%3Cproquest_pubme%3E2481909733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481909733&rft_id=info:pmid/32966646&rfr_iscdi=true