Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs
Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material design requires finding small-scale structures - meso-scale geometry and micro-scale BRDFs - that produce a desired large-scale appearance expressed as a macro-scale BRDF. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2022-04, Vol.28 (4), p.1810-1823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1823 |
---|---|
container_issue | 4 |
container_start_page | 1810 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Shi, Weiqi Dorsey, Julie Rushmeier, Holly |
description | Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material design requires finding small-scale structures - meso-scale geometry and micro-scale BRDFs - that produce a desired large-scale appearance expressed as a macro-scale BRDF. The adjustment of small-scale geometry and reflectances to achieve a desired appearance can become a tedious trial-and-error process. We present a learning-based solution to fit a target macro-scale BRDF with a combination of a meso-scale geometry and micro-scale BRDF. We confront challenges in representation at both scales. At the large scale we need macro-scale BRDFs that are both compact and expressive. At the small scale we need diverse combinations of geometric patterns and potentially spatially varying micro-BRDFs. For large-scale macro-BRDFs, we propose a novel 2D subset of a tabular BRDF representation that well preserves important appearance features for learning. For small-scale details, we represent geometries and BRDFs in different categories with different physical parameters to define multiple independent continuous search spaces. To build the mapping between large-scale macro-BRDFs and small-scale details, we propose an end-to-end model that takes the subset BRDF as input and performs classification and parameter estimation on small-scale details to find an accurate reconstruction. Compared with other fitting methods, our learning-based solution provides higher reconstruction accuracy and covers a wider gamut of appearance. |
doi_str_mv | 10.1109/TVCG.2020.3026021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32960764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9203787</ieee_id><sourcerecordid>2633041919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e4ab960b1718bafa3d15cdcdb73c62e262e0780df4e4f3ade078346c60b314bb3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6uxHN9mjjbYWKoJWr8smmUhKPupuIvjv3dLag6edZZ53ZngIuaQwphTU3eojmY8ZMBhzYBIYPSJDqgQNYQLy2NcQRSGTTA7ImXNrACpErE7JgDMlIZJiSJIlGtuUzWc4NQ7zYNF8o3UYTMvwLTMVBs-mQ1uaKpiVXee5YGbbOliZtK-MDaavDzN3Tk4KUzm82L8j8j57XCVP4fJlvkjul2HGFetCFCb1a1Ma0Tg1heE5nWR5lqcRzyRDfydCFENeCBQFN_n2x4XMfIRTkaZ8RG53cze2_erRdbouXYZVZRpse6eZEBPBpBLMozf_0HXb28Zfp5nkHARVVHmK7qjMts5ZLPTGlrWxP5qC3hrWW8N6a1jvDfvM9X5yn9aYHxJ_Sj1wtQNKRDy0FQMexRH_BYhFfPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633041919</pqid></control><display><type>article</type><title>Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Weiqi ; Dorsey, Julie ; Rushmeier, Holly</creator><creatorcontrib>Shi, Weiqi ; Dorsey, Julie ; Rushmeier, Holly</creatorcontrib><description>Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material design requires finding small-scale structures - meso-scale geometry and micro-scale BRDFs - that produce a desired large-scale appearance expressed as a macro-scale BRDF. The adjustment of small-scale geometry and reflectances to achieve a desired appearance can become a tedious trial-and-error process. We present a learning-based solution to fit a target macro-scale BRDF with a combination of a meso-scale geometry and micro-scale BRDF. We confront challenges in representation at both scales. At the large scale we need macro-scale BRDFs that are both compact and expressive. At the small scale we need diverse combinations of geometric patterns and potentially spatially varying micro-BRDFs. For large-scale macro-BRDFs, we propose a novel 2D subset of a tabular BRDF representation that well preserves important appearance features for learning. For small-scale details, we represent geometries and BRDFs in different categories with different physical parameters to define multiple independent continuous search spaces. To build the mapping between large-scale macro-BRDFs and small-scale details, we propose an end-to-end model that takes the subset BRDF as input and performs classification and parameter estimation on small-scale details to find an accurate reconstruction. Compared with other fitting methods, our learning-based solution provides higher reconstruction accuracy and covers a wider gamut of appearance.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3026021</identifier><identifier>PMID: 32960764</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; bi-scale materials ; Computational modeling ; Geometry ; Learning ; Lighting ; material appearance ; Mesoscale phenomena ; Parameter estimation ; Physical properties ; Reconstruction ; Reflectance ; Rendering (computer graphics) ; Representations ; Training ; Two dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1810-1823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e4ab960b1718bafa3d15cdcdb73c62e262e0780df4e4f3ade078346c60b314bb3</citedby><cites>FETCH-LOGICAL-c392t-e4ab960b1718bafa3d15cdcdb73c62e262e0780df4e4f3ade078346c60b314bb3</cites><orcidid>0000-0002-6413-8557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9203787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9203787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32960764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Weiqi</creatorcontrib><creatorcontrib>Dorsey, Julie</creatorcontrib><creatorcontrib>Rushmeier, Holly</creatorcontrib><title>Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material design requires finding small-scale structures - meso-scale geometry and micro-scale BRDFs - that produce a desired large-scale appearance expressed as a macro-scale BRDF. The adjustment of small-scale geometry and reflectances to achieve a desired appearance can become a tedious trial-and-error process. We present a learning-based solution to fit a target macro-scale BRDF with a combination of a meso-scale geometry and micro-scale BRDF. We confront challenges in representation at both scales. At the large scale we need macro-scale BRDFs that are both compact and expressive. At the small scale we need diverse combinations of geometric patterns and potentially spatially varying micro-BRDFs. For large-scale macro-BRDFs, we propose a novel 2D subset of a tabular BRDF representation that well preserves important appearance features for learning. For small-scale details, we represent geometries and BRDFs in different categories with different physical parameters to define multiple independent continuous search spaces. To build the mapping between large-scale macro-BRDFs and small-scale details, we propose an end-to-end model that takes the subset BRDF as input and performs classification and parameter estimation on small-scale details to find an accurate reconstruction. Compared with other fitting methods, our learning-based solution provides higher reconstruction accuracy and covers a wider gamut of appearance.</description><subject>Analytical models</subject><subject>bi-scale materials</subject><subject>Computational modeling</subject><subject>Geometry</subject><subject>Learning</subject><subject>Lighting</subject><subject>material appearance</subject><subject>Mesoscale phenomena</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Reconstruction</subject><subject>Reflectance</subject><subject>Rendering (computer graphics)</subject><subject>Representations</subject><subject>Training</subject><subject>Two dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6uxHN9mjjbYWKoJWr8smmUhKPupuIvjv3dLag6edZZ53ZngIuaQwphTU3eojmY8ZMBhzYBIYPSJDqgQNYQLy2NcQRSGTTA7ImXNrACpErE7JgDMlIZJiSJIlGtuUzWc4NQ7zYNF8o3UYTMvwLTMVBs-mQ1uaKpiVXee5YGbbOliZtK-MDaavDzN3Tk4KUzm82L8j8j57XCVP4fJlvkjul2HGFetCFCb1a1Ma0Tg1heE5nWR5lqcRzyRDfydCFENeCBQFN_n2x4XMfIRTkaZ8RG53cze2_erRdbouXYZVZRpse6eZEBPBpBLMozf_0HXb28Zfp5nkHARVVHmK7qjMts5ZLPTGlrWxP5qC3hrWW8N6a1jvDfvM9X5yn9aYHxJ_Sj1wtQNKRDy0FQMexRH_BYhFfPo</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Shi, Weiqi</creator><creator>Dorsey, Julie</creator><creator>Rushmeier, Holly</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6413-8557</orcidid></search><sort><creationdate>20220401</creationdate><title>Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs</title><author>Shi, Weiqi ; Dorsey, Julie ; Rushmeier, Holly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e4ab960b1718bafa3d15cdcdb73c62e262e0780df4e4f3ade078346c60b314bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>bi-scale materials</topic><topic>Computational modeling</topic><topic>Geometry</topic><topic>Learning</topic><topic>Lighting</topic><topic>material appearance</topic><topic>Mesoscale phenomena</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Reconstruction</topic><topic>Reflectance</topic><topic>Rendering (computer graphics)</topic><topic>Representations</topic><topic>Training</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Weiqi</creatorcontrib><creatorcontrib>Dorsey, Julie</creatorcontrib><creatorcontrib>Rushmeier, Holly</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Weiqi</au><au>Dorsey, Julie</au><au>Rushmeier, Holly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1810</spage><epage>1823</epage><pages>1810-1823</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material design requires finding small-scale structures - meso-scale geometry and micro-scale BRDFs - that produce a desired large-scale appearance expressed as a macro-scale BRDF. The adjustment of small-scale geometry and reflectances to achieve a desired appearance can become a tedious trial-and-error process. We present a learning-based solution to fit a target macro-scale BRDF with a combination of a meso-scale geometry and micro-scale BRDF. We confront challenges in representation at both scales. At the large scale we need macro-scale BRDFs that are both compact and expressive. At the small scale we need diverse combinations of geometric patterns and potentially spatially varying micro-BRDFs. For large-scale macro-BRDFs, we propose a novel 2D subset of a tabular BRDF representation that well preserves important appearance features for learning. For small-scale details, we represent geometries and BRDFs in different categories with different physical parameters to define multiple independent continuous search spaces. To build the mapping between large-scale macro-BRDFs and small-scale details, we propose an end-to-end model that takes the subset BRDF as input and performs classification and parameter estimation on small-scale details to find an accurate reconstruction. Compared with other fitting methods, our learning-based solution provides higher reconstruction accuracy and covers a wider gamut of appearance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32960764</pmid><doi>10.1109/TVCG.2020.3026021</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6413-8557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1810-1823 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_32960764 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models bi-scale materials Computational modeling Geometry Learning Lighting material appearance Mesoscale phenomena Parameter estimation Physical properties Reconstruction Reflectance Rendering (computer graphics) Representations Training Two dimensional displays |
title | Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20Inverse%20Bi-Scale%20Material%20Fitting%20From%20Tabular%20BRDFs&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Shi,%20Weiqi&rft.date=2022-04-01&rft.volume=28&rft.issue=4&rft.spage=1810&rft.epage=1823&rft.pages=1810-1823&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3026021&rft_dat=%3Cproquest_RIE%3E2633041919%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633041919&rft_id=info:pmid/32960764&rft_ieee_id=9203787&rfr_iscdi=true |