Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation

The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-05, Vol.52 (5), p.3819-3828
Hauptverfasser: Pancholi, Sidharth, Joshi, Amit M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3828
container_issue 5
container_start_page 3819
container_title IEEE transactions on cybernetics
container_volume 52
creator Pancholi, Sidharth
Joshi, Amit M.
description The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural information loss. This article proposes a novel feature extraction method based on advanced energy kernel-based features (AEKFs). The proposed method is evaluated on a scientific dataset which contains six types of upper limb motion with three different force variations. Furthermore, the EMG signal is acquired for eight upper limb gestures for the testing algorithm on the DSP processor. The efficiency of the proposed feature set has been investigated using classification accuracy (CA), Davies-Bouldin (DB) index-based separability measurement, and time complexity as performance metrics. Moreover, the proposed AEKF features, along with the LDA classifier, have been implemented on the DSP processor (ARM cortex M4) for real-time viability. Offline metrics comparison with the existing approaches prove that AEKF features exhibit lower time complexity along with a higher CA of 97.33%. The algorithm is tested on the DSP processor and CA is reported \approx ~92 %. MATLAB 2015a has been deployed in Intel Core i7, 3.40-GHz RAM for all offline analyses.
doi_str_mv 10.1109/TCYB.2020.3016595
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32946409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199852</ieee_id><sourcerecordid>2444382602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1949-f91ac21f469badd9c8360bf38040faec23e51ee44fc77fcac90430551b6fdde33</originalsourceid><addsrcrecordid>eNpdkV1r2zAUhkXZaEPXHzAGQ7Cb3TjTl2XrMg1JWprR0o_BroQiH7UutpVJdmnZn69MslxMNxJHz_tyznkR-kzJlFKiftzPf59PGWFkygmVucqP0IRRWWaMFfmHw1sWJ-gsxmeSTplKqjxGJ5wpIQVRE_R3Vr2YzkKFFx2Exzd8BaGDJjs3MdWWYPohAF689sHYvvYdvrNP0AJ2PuDLdhv8yyj9ucpubveam-Bj_wSxjnjuuz74Bs8eTd3FHi99sIB_mVCb0esT-uhME-Fsf5-ih-Xifn6Rra9Xl_PZOrNUCZU5RY1l1AmpNqaqlC25JBvHSyKIM2AZh5wCCOFsUThrrCKCkzynG-mqCjg_Rd93vqndPwPEXrd1tNA0pgM_RM2EELxkkrCEfvsPffZD6FJ3mklZpEWTnCSK7iibZo0BnN6GujXhTVOix3D0GI4ew9H7cJLm69552LRQHRT_okjAlx1QA8DhW1GlypzxdzqFktY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667016050</pqid></control><display><type>article</type><title>Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation</title><source>IEEE Electronic Library (IEL)</source><creator>Pancholi, Sidharth ; Joshi, Amit M.</creator><creatorcontrib>Pancholi, Sidharth ; Joshi, Amit M.</creatorcontrib><description>The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural information loss. This article proposes a novel feature extraction method based on advanced energy kernel-based features (AEKFs). The proposed method is evaluated on a scientific dataset which contains six types of upper limb motion with three different force variations. Furthermore, the EMG signal is acquired for eight upper limb gestures for the testing algorithm on the DSP processor. The efficiency of the proposed feature set has been investigated using classification accuracy (CA), Davies-Bouldin (DB) index-based separability measurement, and time complexity as performance metrics. Moreover, the proposed AEKF features, along with the LDA classifier, have been implemented on the DSP processor (ARM cortex M4) for real-time viability. Offline metrics comparison with the existing approaches prove that AEKF features exhibit lower time complexity along with a higher CA of 97.33%. The algorithm is tested on the DSP processor and CA is reported &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~92 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. MATLAB 2015a has been deployed in Intel Core i7, 3.40-GHz RAM for all offline analyses.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.3016595</identifier><identifier>PMID: 32946409</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Amputees ; Artificial Limbs ; Bionics ; classification ; Complexity ; Digital signal processing ; Electrodes ; Electromyography ; Electromyography - methods ; EMG ; Feature extraction ; Force ; Kernel functions ; Machine learning ; Microprocessors ; Muscles ; Pattern recognition ; Pattern Recognition, Automated - methods ; Performance measurement ; Prostheses ; prosthetics ; Real-time systems ; Time measurement ; Upper Extremity</subject><ispartof>IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3819-3828</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1949-f91ac21f469badd9c8360bf38040faec23e51ee44fc77fcac90430551b6fdde33</citedby><cites>FETCH-LOGICAL-c1949-f91ac21f469badd9c8360bf38040faec23e51ee44fc77fcac90430551b6fdde33</cites><orcidid>0000-0003-3450-9617 ; 0000-0001-7919-1652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9199852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32946409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pancholi, Sidharth</creatorcontrib><creatorcontrib>Joshi, Amit M.</creatorcontrib><title>Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural information loss. This article proposes a novel feature extraction method based on advanced energy kernel-based features (AEKFs). The proposed method is evaluated on a scientific dataset which contains six types of upper limb motion with three different force variations. Furthermore, the EMG signal is acquired for eight upper limb gestures for the testing algorithm on the DSP processor. The efficiency of the proposed feature set has been investigated using classification accuracy (CA), Davies-Bouldin (DB) index-based separability measurement, and time complexity as performance metrics. Moreover, the proposed AEKF features, along with the LDA classifier, have been implemented on the DSP processor (ARM cortex M4) for real-time viability. Offline metrics comparison with the existing approaches prove that AEKF features exhibit lower time complexity along with a higher CA of 97.33%. The algorithm is tested on the DSP processor and CA is reported &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~92 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. MATLAB 2015a has been deployed in Intel Core i7, 3.40-GHz RAM for all offline analyses.</description><subject>Algorithms</subject><subject>Amputees</subject><subject>Artificial Limbs</subject><subject>Bionics</subject><subject>classification</subject><subject>Complexity</subject><subject>Digital signal processing</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>EMG</subject><subject>Feature extraction</subject><subject>Force</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Muscles</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Performance measurement</subject><subject>Prostheses</subject><subject>prosthetics</subject><subject>Real-time systems</subject><subject>Time measurement</subject><subject>Upper Extremity</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1r2zAUhkXZaEPXHzAGQ7Cb3TjTl2XrMg1JWprR0o_BroQiH7UutpVJdmnZn69MslxMNxJHz_tyznkR-kzJlFKiftzPf59PGWFkygmVucqP0IRRWWaMFfmHw1sWJ-gsxmeSTplKqjxGJ5wpIQVRE_R3Vr2YzkKFFx2Exzd8BaGDJjs3MdWWYPohAF689sHYvvYdvrNP0AJ2PuDLdhv8yyj9ucpubveam-Bj_wSxjnjuuz74Bs8eTd3FHi99sIB_mVCb0esT-uhME-Fsf5-ih-Xifn6Rra9Xl_PZOrNUCZU5RY1l1AmpNqaqlC25JBvHSyKIM2AZh5wCCOFsUThrrCKCkzynG-mqCjg_Rd93vqndPwPEXrd1tNA0pgM_RM2EELxkkrCEfvsPffZD6FJ3mklZpEWTnCSK7iibZo0BnN6GujXhTVOix3D0GI4ew9H7cJLm69552LRQHRT_okjAlx1QA8DhW1GlypzxdzqFktY</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Pancholi, Sidharth</creator><creator>Joshi, Amit M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3450-9617</orcidid><orcidid>https://orcid.org/0000-0001-7919-1652</orcidid></search><sort><creationdate>202205</creationdate><title>Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation</title><author>Pancholi, Sidharth ; Joshi, Amit M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1949-f91ac21f469badd9c8360bf38040faec23e51ee44fc77fcac90430551b6fdde33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Amputees</topic><topic>Artificial Limbs</topic><topic>Bionics</topic><topic>classification</topic><topic>Complexity</topic><topic>Digital signal processing</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>EMG</topic><topic>Feature extraction</topic><topic>Force</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Muscles</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Performance measurement</topic><topic>Prostheses</topic><topic>prosthetics</topic><topic>Real-time systems</topic><topic>Time measurement</topic><topic>Upper Extremity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pancholi, Sidharth</creatorcontrib><creatorcontrib>Joshi, Amit M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pancholi, Sidharth</au><au>Joshi, Amit M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-05</date><risdate>2022</risdate><volume>52</volume><issue>5</issue><spage>3819</spage><epage>3828</epage><pages>3819-3828</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural information loss. This article proposes a novel feature extraction method based on advanced energy kernel-based features (AEKFs). The proposed method is evaluated on a scientific dataset which contains six types of upper limb motion with three different force variations. Furthermore, the EMG signal is acquired for eight upper limb gestures for the testing algorithm on the DSP processor. The efficiency of the proposed feature set has been investigated using classification accuracy (CA), Davies-Bouldin (DB) index-based separability measurement, and time complexity as performance metrics. Moreover, the proposed AEKF features, along with the LDA classifier, have been implemented on the DSP processor (ARM cortex M4) for real-time viability. Offline metrics comparison with the existing approaches prove that AEKF features exhibit lower time complexity along with a higher CA of 97.33%. The algorithm is tested on the DSP processor and CA is reported &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\approx ~92 &lt;/tex-math&gt;&lt;/inline-formula&gt;%. MATLAB 2015a has been deployed in Intel Core i7, 3.40-GHz RAM for all offline analyses.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32946409</pmid><doi>10.1109/TCYB.2020.3016595</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3450-9617</orcidid><orcidid>https://orcid.org/0000-0001-7919-1652</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3819-3828
issn 2168-2267
2168-2275
language eng
recordid cdi_pubmed_primary_32946409
source IEEE Electronic Library (IEL)
subjects Algorithms
Amputees
Artificial Limbs
Bionics
classification
Complexity
Digital signal processing
Electrodes
Electromyography
Electromyography - methods
EMG
Feature extraction
Force
Kernel functions
Machine learning
Microprocessors
Muscles
Pattern recognition
Pattern Recognition, Automated - methods
Performance measurement
Prostheses
prosthetics
Real-time systems
Time measurement
Upper Extremity
title Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Energy%20Kernel-Based%20Feature%20Extraction%20Scheme%20for%20Improved%20EMG-PR-Based%20Prosthesis%20Control%20Against%20Force%20Variation&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Pancholi,%20Sidharth&rft.date=2022-05&rft.volume=52&rft.issue=5&rft.spage=3819&rft.epage=3828&rft.pages=3819-3828&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.3016595&rft_dat=%3Cproquest_RIE%3E2444382602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667016050&rft_id=info:pmid/32946409&rft_ieee_id=9199852&rfr_iscdi=true