Advanced Energy Kernel-Based Feature Extraction Scheme for Improved EMG-PR-Based Prosthesis Control Against Force Variation

The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-05, Vol.52 (5), p.3819-3828
Hauptverfasser: Pancholi, Sidharth, Joshi, Amit M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The EMG signal is a widely focused, clinically viable, and reliable source for controlling bionics and prosthesis devices with the aid of machine-learning algorithms. The decisive step in the EMG pattern recognition (EMG-PR)-based control scheme is to extract the features with minimum neural information loss. This article proposes a novel feature extraction method based on advanced energy kernel-based features (AEKFs). The proposed method is evaluated on a scientific dataset which contains six types of upper limb motion with three different force variations. Furthermore, the EMG signal is acquired for eight upper limb gestures for the testing algorithm on the DSP processor. The efficiency of the proposed feature set has been investigated using classification accuracy (CA), Davies-Bouldin (DB) index-based separability measurement, and time complexity as performance metrics. Moreover, the proposed AEKF features, along with the LDA classifier, have been implemented on the DSP processor (ARM cortex M4) for real-time viability. Offline metrics comparison with the existing approaches prove that AEKF features exhibit lower time complexity along with a higher CA of 97.33%. The algorithm is tested on the DSP processor and CA is reported \approx ~92 %. MATLAB 2015a has been deployed in Intel Core i7, 3.40-GHz RAM for all offline analyses.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2020.3016595