Evaluating and improving a matched comparison of antidepressants and bone density

Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if cova...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2021-12, Vol.77 (4), p.1276-1288
1. Verfasser: Yu, Ruoqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1288
container_issue 4
container_start_page 1276
container_title Biometrics
container_volume 77
creator Yu, Ruoqi
description Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.
doi_str_mv 10.1111/biom.13374
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_32940344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443880969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vpx8QdIwYsIXZNO0o-jLn6BIoKCt5A2U420zZq0yv57s1v14MG5zAw88zI8hBwwOmOhTktj2xkDyPgGmTLBWUx5QjfJlFKaxsDZ84TseP8W1kLQZJtMICk4Bc6n5OHiQzWD6k33EqlOR6ZdOPux3qJW9dUr6qiy7UI5420X2TpQvdG4cOh9GP36qrQdRho7b_rlHtmqVeNx_7vvkqfLi8f5dXx7f3UzP7uNKxAZj7FAjVpXkJQIWVWjYrQAqJnKM6izUosy54KDSDNkOdNaaJGninMBvBYlwC45HnPDw-8D-l62xlfYNKpDO3iZcA55Tou0COjRH_TNDq4L38kkXQlLgfFAnYxU5az3Dmu5cKZVbikZlSvRciVarkUH-PA7cihb1L_oj9kAsBH4NA0u_4mS5zf3d2PoF6vriFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615416314</pqid></control><display><type>article</type><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Yu, Ruoqi</creator><creatorcontrib>Yu, Ruoqi</creatorcontrib><description>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13374</identifier><identifier>PMID: 32940344</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antidepressants ; Antidepressive Agents - therapeutic use ; Bivariate analysis ; Bone Density ; causal inference ; Causality ; covariate balance ; Joints (anatomy) ; matching ; Observational studies ; observational study ; Probability ; randomization ; Research Design</subject><ispartof>Biometrics, 2021-12, Vol.77 (4), p.1276-1288</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><rights>2021 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</citedby><cites>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</cites><orcidid>0000-0002-1770-1458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13374$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13374$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32940344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Ruoqi</creatorcontrib><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</description><subject>Antidepressants</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Bivariate analysis</subject><subject>Bone Density</subject><subject>causal inference</subject><subject>Causality</subject><subject>covariate balance</subject><subject>Joints (anatomy)</subject><subject>matching</subject><subject>Observational studies</subject><subject>observational study</subject><subject>Probability</subject><subject>randomization</subject><subject>Research Design</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7vpx8QdIwYsIXZNO0o-jLn6BIoKCt5A2U420zZq0yv57s1v14MG5zAw88zI8hBwwOmOhTktj2xkDyPgGmTLBWUx5QjfJlFKaxsDZ84TseP8W1kLQZJtMICk4Bc6n5OHiQzWD6k33EqlOR6ZdOPux3qJW9dUr6qiy7UI5420X2TpQvdG4cOh9GP36qrQdRho7b_rlHtmqVeNx_7vvkqfLi8f5dXx7f3UzP7uNKxAZj7FAjVpXkJQIWVWjYrQAqJnKM6izUosy54KDSDNkOdNaaJGninMBvBYlwC45HnPDw-8D-l62xlfYNKpDO3iZcA55Tou0COjRH_TNDq4L38kkXQlLgfFAnYxU5az3Dmu5cKZVbikZlSvRciVarkUH-PA7cihb1L_oj9kAsBH4NA0u_4mS5zf3d2PoF6vriFc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Yu, Ruoqi</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1770-1458</orcidid></search><sort><creationdate>202112</creationdate><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><author>Yu, Ruoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antidepressants</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Bivariate analysis</topic><topic>Bone Density</topic><topic>causal inference</topic><topic>Causality</topic><topic>covariate balance</topic><topic>Joints (anatomy)</topic><topic>matching</topic><topic>Observational studies</topic><topic>observational study</topic><topic>Probability</topic><topic>randomization</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ruoqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ruoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating and improving a matched comparison of antidepressants and bone density</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2021-12</date><risdate>2021</risdate><volume>77</volume><issue>4</issue><spage>1276</spage><epage>1288</epage><pages>1276-1288</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32940344</pmid><doi>10.1111/biom.13374</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1770-1458</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2021-12, Vol.77 (4), p.1276-1288
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmed_primary_32940344
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects Antidepressants
Antidepressive Agents - therapeutic use
Bivariate analysis
Bone Density
causal inference
Causality
covariate balance
Joints (anatomy)
matching
Observational studies
observational study
Probability
randomization
Research Design
title Evaluating and improving a matched comparison of antidepressants and bone density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20and%20improving%20a%20matched%20comparison%20of%20antidepressants%20and%20bone%20density&rft.jtitle=Biometrics&rft.au=Yu,%20Ruoqi&rft.date=2021-12&rft.volume=77&rft.issue=4&rft.spage=1276&rft.epage=1288&rft.pages=1276-1288&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13374&rft_dat=%3Cproquest_cross%3E2443880969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615416314&rft_id=info:pmid/32940344&rfr_iscdi=true