Evaluating and improving a matched comparison of antidepressants and bone density
Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if cova...
Gespeichert in:
Veröffentlicht in: | Biometrics 2021-12, Vol.77 (4), p.1276-1288 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1288 |
---|---|
container_issue | 4 |
container_start_page | 1276 |
container_title | Biometrics |
container_volume | 77 |
creator | Yu, Ruoqi |
description | Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN. |
doi_str_mv | 10.1111/biom.13374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_32940344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443880969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vpx8QdIwYsIXZNO0o-jLn6BIoKCt5A2U420zZq0yv57s1v14MG5zAw88zI8hBwwOmOhTktj2xkDyPgGmTLBWUx5QjfJlFKaxsDZ84TseP8W1kLQZJtMICk4Bc6n5OHiQzWD6k33EqlOR6ZdOPux3qJW9dUr6qiy7UI5420X2TpQvdG4cOh9GP36qrQdRho7b_rlHtmqVeNx_7vvkqfLi8f5dXx7f3UzP7uNKxAZj7FAjVpXkJQIWVWjYrQAqJnKM6izUosy54KDSDNkOdNaaJGninMBvBYlwC45HnPDw-8D-l62xlfYNKpDO3iZcA55Tou0COjRH_TNDq4L38kkXQlLgfFAnYxU5az3Dmu5cKZVbikZlSvRciVarkUH-PA7cihb1L_oj9kAsBH4NA0u_4mS5zf3d2PoF6vriFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615416314</pqid></control><display><type>article</type><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Yu, Ruoqi</creator><creatorcontrib>Yu, Ruoqi</creatorcontrib><description>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13374</identifier><identifier>PMID: 32940344</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antidepressants ; Antidepressive Agents - therapeutic use ; Bivariate analysis ; Bone Density ; causal inference ; Causality ; covariate balance ; Joints (anatomy) ; matching ; Observational studies ; observational study ; Probability ; randomization ; Research Design</subject><ispartof>Biometrics, 2021-12, Vol.77 (4), p.1276-1288</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><rights>2021 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</citedby><cites>FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</cites><orcidid>0000-0002-1770-1458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13374$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13374$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32940344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Ruoqi</creatorcontrib><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</description><subject>Antidepressants</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Bivariate analysis</subject><subject>Bone Density</subject><subject>causal inference</subject><subject>Causality</subject><subject>covariate balance</subject><subject>Joints (anatomy)</subject><subject>matching</subject><subject>Observational studies</subject><subject>observational study</subject><subject>Probability</subject><subject>randomization</subject><subject>Research Design</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7vpx8QdIwYsIXZNO0o-jLn6BIoKCt5A2U420zZq0yv57s1v14MG5zAw88zI8hBwwOmOhTktj2xkDyPgGmTLBWUx5QjfJlFKaxsDZ84TseP8W1kLQZJtMICk4Bc6n5OHiQzWD6k33EqlOR6ZdOPux3qJW9dUr6qiy7UI5420X2TpQvdG4cOh9GP36qrQdRho7b_rlHtmqVeNx_7vvkqfLi8f5dXx7f3UzP7uNKxAZj7FAjVpXkJQIWVWjYrQAqJnKM6izUosy54KDSDNkOdNaaJGninMBvBYlwC45HnPDw-8D-l62xlfYNKpDO3iZcA55Tou0COjRH_TNDq4L38kkXQlLgfFAnYxU5az3Dmu5cKZVbikZlSvRciVarkUH-PA7cihb1L_oj9kAsBH4NA0u_4mS5zf3d2PoF6vriFc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Yu, Ruoqi</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1770-1458</orcidid></search><sort><creationdate>202112</creationdate><title>Evaluating and improving a matched comparison of antidepressants and bone density</title><author>Yu, Ruoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-e9ededdc32be37cfea10933f1a873f7bd5b84543567e181dd5d586a44534f5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antidepressants</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Bivariate analysis</topic><topic>Bone Density</topic><topic>causal inference</topic><topic>Causality</topic><topic>covariate balance</topic><topic>Joints (anatomy)</topic><topic>matching</topic><topic>Observational studies</topic><topic>observational study</topic><topic>Probability</topic><topic>randomization</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ruoqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ruoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating and improving a matched comparison of antidepressants and bone density</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2021-12</date><risdate>2021</risdate><volume>77</volume><issue>4</issue><spage>1276</spage><epage>1288</epage><pages>1276-1288</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32940344</pmid><doi>10.1111/biom.13374</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1770-1458</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2021-12, Vol.77 (4), p.1276-1288 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmed_primary_32940344 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | Antidepressants Antidepressive Agents - therapeutic use Bivariate analysis Bone Density causal inference Causality covariate balance Joints (anatomy) matching Observational studies observational study Probability randomization Research Design |
title | Evaluating and improving a matched comparison of antidepressants and bone density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20and%20improving%20a%20matched%20comparison%20of%20antidepressants%20and%20bone%20density&rft.jtitle=Biometrics&rft.au=Yu,%20Ruoqi&rft.date=2021-12&rft.volume=77&rft.issue=4&rft.spage=1276&rft.epage=1288&rft.pages=1276-1288&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13374&rft_dat=%3Cproquest_cross%3E2443880969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615416314&rft_id=info:pmid/32940344&rfr_iscdi=true |