Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source

A data‐driven machine‐learning analysis in 800 consecutive patients with emboic stroke of undetermined source (ESUS) identified 4 clusters of ESUS which were strongly associated with arterial disease, atrial cardiopathy, patent foramen ovale and left ventricular disease respectively. More than half...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of neurology 2021-01, Vol.28 (1), p.192-201
Hauptverfasser: Ntaios, G., Weng, S. F., Perlepe, K., Akyea, R., Condon, L., Lambrou, D., Sirimarco, G., Strambo, D., Eskandari, A., Karagkiozi, E., Vemmou, A., Korompoki, E., Manios, E., Makaritsis, K., Vemmos, K., Michel, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 192
container_title European journal of neurology
container_volume 28
creator Ntaios, G.
Weng, S. F.
Perlepe, K.
Akyea, R.
Condon, L.
Lambrou, D.
Sirimarco, G.
Strambo, D.
Eskandari, A.
Karagkiozi, E.
Vemmou, A.
Korompoki, E.
Manios, E.
Makaritsis, K.
Vemmos, K.
Michel, P.
description A data‐driven machine‐learning analysis in 800 consecutive patients with emboic stroke of undetermined source (ESUS) identified 4 clusters of ESUS which were strongly associated with arterial disease, atrial cardiopathy, patent foramen ovale and left ventricular disease respectively. More than half of patients were assigned to the cluster associated with arterial disease. Background and purpose Hierarchical clustering, a common ‘unsupervised’ machine‐learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data‐driven machine‐learning method, and explored variation in stroke recurrence between clusters. Methods We used a hierarchical k‐means clustering algorithm on patients’ baseline data, which assigned each individual into a unique clustering group, using a minimum‐variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer. Results Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64–4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43–3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster. Conclusions This data‐driven machine‐learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.
doi_str_mv 10.1111/ene.14524
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32918305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471955965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-c3800edf5143d4d05d53ffcb57931fc88c950dc3483ae02755c7c3d5b4e4f02e3</originalsourceid><addsrcrecordid>eNqNkU1uFDEQhS0EIj9kwQVQS2yIokn8O929jCZDiBSFDVm33HYZHLrtwXYTzY4jcEZOkhpmCBJSJLywS6Wvnur5EfKa0VOG5wwCnDKpuHxG9pmcNzMmBHuOtVBsphhle-Qg5ztKKa85fUn2BG9ZI6jaJ_FCF_3rx0-b_HcI1ajNFx8AGwPoFHz4XOmgh3X2uYquWsUCoXg9VDD2cfCmynFKBnLlw99WSfErbPApWCiQRlS0O_IVeeH0kOFo9x6S2_fLT4sPs-uPl1eL8-uZEU0jNzelYJ1iUlhpqbJKOGd6VbeCOdM0plXUGiEboQFdKWVqI6zqJUhHOYhD8m6ru0rx2wS5dKPPBoZBB4hT7riUnPO5EHNE3_6D3uGq6HpD1axVqp0rpI63lEkx5wSuWyU_6rTuGO02KXSYQvc7BWTf7BSnfgT7SP75dgSaLXAPfXTZeAgGHjHMSdXotJZYUbbwRRcfwyJOoeDoyf-PIn22o_0A66dX7pY3y-3uD3b4tHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471955965</pqid></control><display><type>article</type><title>Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ntaios, G. ; Weng, S. F. ; Perlepe, K. ; Akyea, R. ; Condon, L. ; Lambrou, D. ; Sirimarco, G. ; Strambo, D. ; Eskandari, A. ; Karagkiozi, E. ; Vemmou, A. ; Korompoki, E. ; Manios, E. ; Makaritsis, K. ; Vemmos, K. ; Michel, P.</creator><creatorcontrib>Ntaios, G. ; Weng, S. F. ; Perlepe, K. ; Akyea, R. ; Condon, L. ; Lambrou, D. ; Sirimarco, G. ; Strambo, D. ; Eskandari, A. ; Karagkiozi, E. ; Vemmou, A. ; Korompoki, E. ; Manios, E. ; Makaritsis, K. ; Vemmos, K. ; Michel, P.</creatorcontrib><description>A data‐driven machine‐learning analysis in 800 consecutive patients with emboic stroke of undetermined source (ESUS) identified 4 clusters of ESUS which were strongly associated with arterial disease, atrial cardiopathy, patent foramen ovale and left ventricular disease respectively. More than half of patients were assigned to the cluster associated with arterial disease. Background and purpose Hierarchical clustering, a common ‘unsupervised’ machine‐learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data‐driven machine‐learning method, and explored variation in stroke recurrence between clusters. Methods We used a hierarchical k‐means clustering algorithm on patients’ baseline data, which assigned each individual into a unique clustering group, using a minimum‐variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer. Results Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64–4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43–3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster. Conclusions This data‐driven machine‐learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.</description><identifier>ISSN: 1351-5101</identifier><identifier>EISSN: 1468-1331</identifier><identifier>DOI: 10.1111/ene.14524</identifier><identifier>PMID: 32918305</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Algorithms ; Cardiac arrhythmia ; Clinical Neurology ; Cluster analysis ; Clustering ; Confidence intervals ; Coronary artery disease ; Data analysis ; Disease ; embolic stroke of undetermined source ; Fibrillation ; Heart diseases ; hierarchical clustering ; Learning algorithms ; Life Sciences &amp; Biomedicine ; Machine learning ; Neurosciences ; Neurosciences &amp; Neurology ; potential embolic source ; Science &amp; Technology ; Stroke ; Ventricle</subject><ispartof>European journal of neurology, 2021-01, Vol.28 (1), p.192-201</ispartof><rights>2020 European Academy of Neurology</rights><rights>2020 European Academy of Neurology.</rights><rights>Copyright © 2021 European Academy of Neurology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000575797400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3884-c3800edf5143d4d05d53ffcb57931fc88c950dc3483ae02755c7c3d5b4e4f02e3</citedby><cites>FETCH-LOGICAL-c3884-c3800edf5143d4d05d53ffcb57931fc88c950dc3483ae02755c7c3d5b4e4f02e3</cites><orcidid>0000-0003-0403-8316 ; 0000-0002-0629-9248 ; 0000-0003-2465-7130 ; 0000-0003-4429-2714 ; 0000-0003-4529-8237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fene.14524$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fene.14524$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,39265,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32918305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ntaios, G.</creatorcontrib><creatorcontrib>Weng, S. F.</creatorcontrib><creatorcontrib>Perlepe, K.</creatorcontrib><creatorcontrib>Akyea, R.</creatorcontrib><creatorcontrib>Condon, L.</creatorcontrib><creatorcontrib>Lambrou, D.</creatorcontrib><creatorcontrib>Sirimarco, G.</creatorcontrib><creatorcontrib>Strambo, D.</creatorcontrib><creatorcontrib>Eskandari, A.</creatorcontrib><creatorcontrib>Karagkiozi, E.</creatorcontrib><creatorcontrib>Vemmou, A.</creatorcontrib><creatorcontrib>Korompoki, E.</creatorcontrib><creatorcontrib>Manios, E.</creatorcontrib><creatorcontrib>Makaritsis, K.</creatorcontrib><creatorcontrib>Vemmos, K.</creatorcontrib><creatorcontrib>Michel, P.</creatorcontrib><title>Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source</title><title>European journal of neurology</title><addtitle>EUR J NEUROL</addtitle><addtitle>Eur J Neurol</addtitle><description>A data‐driven machine‐learning analysis in 800 consecutive patients with emboic stroke of undetermined source (ESUS) identified 4 clusters of ESUS which were strongly associated with arterial disease, atrial cardiopathy, patent foramen ovale and left ventricular disease respectively. More than half of patients were assigned to the cluster associated with arterial disease. Background and purpose Hierarchical clustering, a common ‘unsupervised’ machine‐learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data‐driven machine‐learning method, and explored variation in stroke recurrence between clusters. Methods We used a hierarchical k‐means clustering algorithm on patients’ baseline data, which assigned each individual into a unique clustering group, using a minimum‐variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer. Results Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64–4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43–3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster. Conclusions This data‐driven machine‐learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.</description><subject>Algorithms</subject><subject>Cardiac arrhythmia</subject><subject>Clinical Neurology</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Confidence intervals</subject><subject>Coronary artery disease</subject><subject>Data analysis</subject><subject>Disease</subject><subject>embolic stroke of undetermined source</subject><subject>Fibrillation</subject><subject>Heart diseases</subject><subject>hierarchical clustering</subject><subject>Learning algorithms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>potential embolic source</subject><subject>Science &amp; Technology</subject><subject>Stroke</subject><subject>Ventricle</subject><issn>1351-5101</issn><issn>1468-1331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1uFDEQhS0EIj9kwQVQS2yIokn8O929jCZDiBSFDVm33HYZHLrtwXYTzY4jcEZOkhpmCBJSJLywS6Wvnur5EfKa0VOG5wwCnDKpuHxG9pmcNzMmBHuOtVBsphhle-Qg5ztKKa85fUn2BG9ZI6jaJ_FCF_3rx0-b_HcI1ajNFx8AGwPoFHz4XOmgh3X2uYquWsUCoXg9VDD2cfCmynFKBnLlw99WSfErbPApWCiQRlS0O_IVeeH0kOFo9x6S2_fLT4sPs-uPl1eL8-uZEU0jNzelYJ1iUlhpqbJKOGd6VbeCOdM0plXUGiEboQFdKWVqI6zqJUhHOYhD8m6ru0rx2wS5dKPPBoZBB4hT7riUnPO5EHNE3_6D3uGq6HpD1axVqp0rpI63lEkx5wSuWyU_6rTuGO02KXSYQvc7BWTf7BSnfgT7SP75dgSaLXAPfXTZeAgGHjHMSdXotJZYUbbwRRcfwyJOoeDoyf-PIn22o_0A66dX7pY3y-3uD3b4tHI</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Ntaios, G.</creator><creator>Weng, S. F.</creator><creator>Perlepe, K.</creator><creator>Akyea, R.</creator><creator>Condon, L.</creator><creator>Lambrou, D.</creator><creator>Sirimarco, G.</creator><creator>Strambo, D.</creator><creator>Eskandari, A.</creator><creator>Karagkiozi, E.</creator><creator>Vemmou, A.</creator><creator>Korompoki, E.</creator><creator>Manios, E.</creator><creator>Makaritsis, K.</creator><creator>Vemmos, K.</creator><creator>Michel, P.</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0403-8316</orcidid><orcidid>https://orcid.org/0000-0002-0629-9248</orcidid><orcidid>https://orcid.org/0000-0003-2465-7130</orcidid><orcidid>https://orcid.org/0000-0003-4429-2714</orcidid><orcidid>https://orcid.org/0000-0003-4529-8237</orcidid></search><sort><creationdate>202101</creationdate><title>Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source</title><author>Ntaios, G. ; Weng, S. F. ; Perlepe, K. ; Akyea, R. ; Condon, L. ; Lambrou, D. ; Sirimarco, G. ; Strambo, D. ; Eskandari, A. ; Karagkiozi, E. ; Vemmou, A. ; Korompoki, E. ; Manios, E. ; Makaritsis, K. ; Vemmos, K. ; Michel, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-c3800edf5143d4d05d53ffcb57931fc88c950dc3483ae02755c7c3d5b4e4f02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cardiac arrhythmia</topic><topic>Clinical Neurology</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Confidence intervals</topic><topic>Coronary artery disease</topic><topic>Data analysis</topic><topic>Disease</topic><topic>embolic stroke of undetermined source</topic><topic>Fibrillation</topic><topic>Heart diseases</topic><topic>hierarchical clustering</topic><topic>Learning algorithms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>potential embolic source</topic><topic>Science &amp; Technology</topic><topic>Stroke</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntaios, G.</creatorcontrib><creatorcontrib>Weng, S. F.</creatorcontrib><creatorcontrib>Perlepe, K.</creatorcontrib><creatorcontrib>Akyea, R.</creatorcontrib><creatorcontrib>Condon, L.</creatorcontrib><creatorcontrib>Lambrou, D.</creatorcontrib><creatorcontrib>Sirimarco, G.</creatorcontrib><creatorcontrib>Strambo, D.</creatorcontrib><creatorcontrib>Eskandari, A.</creatorcontrib><creatorcontrib>Karagkiozi, E.</creatorcontrib><creatorcontrib>Vemmou, A.</creatorcontrib><creatorcontrib>Korompoki, E.</creatorcontrib><creatorcontrib>Manios, E.</creatorcontrib><creatorcontrib>Makaritsis, K.</creatorcontrib><creatorcontrib>Vemmos, K.</creatorcontrib><creatorcontrib>Michel, P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntaios, G.</au><au>Weng, S. F.</au><au>Perlepe, K.</au><au>Akyea, R.</au><au>Condon, L.</au><au>Lambrou, D.</au><au>Sirimarco, G.</au><au>Strambo, D.</au><au>Eskandari, A.</au><au>Karagkiozi, E.</au><au>Vemmou, A.</au><au>Korompoki, E.</au><au>Manios, E.</au><au>Makaritsis, K.</au><au>Vemmos, K.</au><au>Michel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source</atitle><jtitle>European journal of neurology</jtitle><stitle>EUR J NEUROL</stitle><addtitle>Eur J Neurol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>1351-5101</issn><eissn>1468-1331</eissn><abstract>A data‐driven machine‐learning analysis in 800 consecutive patients with emboic stroke of undetermined source (ESUS) identified 4 clusters of ESUS which were strongly associated with arterial disease, atrial cardiopathy, patent foramen ovale and left ventricular disease respectively. More than half of patients were assigned to the cluster associated with arterial disease. Background and purpose Hierarchical clustering, a common ‘unsupervised’ machine‐learning algorithm, is advantageous for exploring potential underlying aetiology in particularly heterogeneous diseases. We investigated potential embolic sources in embolic stroke of undetermined source (ESUS) using a data‐driven machine‐learning method, and explored variation in stroke recurrence between clusters. Methods We used a hierarchical k‐means clustering algorithm on patients’ baseline data, which assigned each individual into a unique clustering group, using a minimum‐variance method to calculate the similarity between ESUS patients based on all baseline features. Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer. Results Among 800 consecutive ESUS patients (43.3% women, median age 67 years), the optimal number of clusters was four. Left ventricular disease was most prevalent in cluster 1 (present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 [adjusted odds ratio: 2.69, 95% confidence interval (CI): 1.64–4.41]. Arterial disease was most prevalent in cluster 3 (57.7%) and associated with increased likelihood of cluster 3 (adjusted odds ratio: 2.21, 95% CI: 1.43–3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial fibrillation was not significantly associated with any cluster. Conclusions This data‐driven machine‐learning analysis identified four clusters of ESUS that were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular disease, respectively. More than half of the patients were assigned to the cluster associated with arterial disease.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32918305</pmid><doi>10.1111/ene.14524</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0403-8316</orcidid><orcidid>https://orcid.org/0000-0002-0629-9248</orcidid><orcidid>https://orcid.org/0000-0003-2465-7130</orcidid><orcidid>https://orcid.org/0000-0003-4429-2714</orcidid><orcidid>https://orcid.org/0000-0003-4529-8237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1351-5101
ispartof European journal of neurology, 2021-01, Vol.28 (1), p.192-201
issn 1351-5101
1468-1331
language eng
recordid cdi_pubmed_primary_32918305
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Cardiac arrhythmia
Clinical Neurology
Cluster analysis
Clustering
Confidence intervals
Coronary artery disease
Data analysis
Disease
embolic stroke of undetermined source
Fibrillation
Heart diseases
hierarchical clustering
Learning algorithms
Life Sciences & Biomedicine
Machine learning
Neurosciences
Neurosciences & Neurology
potential embolic source
Science & Technology
Stroke
Ventricle
title Data‐driven machine‐learning analysis of potential embolic sources in embolic stroke of undetermined source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20machine%E2%80%90learning%20analysis%20of%20potential%20embolic%20sources%20in%20embolic%20stroke%20of%20undetermined%20source&rft.jtitle=European%20journal%20of%20neurology&rft.au=Ntaios,%20G.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=1351-5101&rft.eissn=1468-1331&rft_id=info:doi/10.1111/ene.14524&rft_dat=%3Cproquest_pubme%3E2471955965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471955965&rft_id=info:pmid/32918305&rfr_iscdi=true