Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity

Abstract OBJECTIVES While decellularization has previously significantly improved the durability of bioprosthetic tissue, remnant immunogenicity may yet necessitate masking through crosslinking. To alleviate the fears of reintroducing the risk of calcific degeneration, we investigated the applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of cardio-thoracic surgery 2020-12, Vol.58 (6), p.1192-1200
Hauptverfasser: Human, Paul, Ofoegbu, Chima, Ilsley, Helen, Bezuidenhout, Deon, de Villiers, Jandre, Williams, David F, Zilla, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 6
container_start_page 1192
container_title European journal of cardio-thoracic surgery
container_volume 58
creator Human, Paul
Ofoegbu, Chima
Ilsley, Helen
Bezuidenhout, Deon
de Villiers, Jandre
Williams, David F
Zilla, Peter
description Abstract OBJECTIVES While decellularization has previously significantly improved the durability of bioprosthetic tissue, remnant immunogenicity may yet necessitate masking through crosslinking. To alleviate the fears of reintroducing the risk of calcific degeneration, we investigated the application of rationally designed crosslinking chemistry, capable of abrogating mineralization in isolation, in decellularized tissue. METHODS Bovine and porcine pericardium were decellularized using the standard Triton X/sodium deoxycholate/DNAse/RNAse methodology and thereafter combined incrementally with components of a four-stage high-density dialdehyde-based fixation regimen. Mechanical properties prior to, and calcium levels following, subcutaneous implantation for 6 and 10 weeks in rats were assessed. RESULTS Enhanced four-stage crosslinking, independent of decellularization, or decellularization followed by any of the crosslinking regimens, achieved sustained, near-elimination of tissue calcification. Decellularization additionally resulted in significantly lower tissue stiffness and higher fatigue resistance in all groups compared to their non-decellularized counterparts. CONCLUSIONS The dual approach of combining decellularization with enhanced crosslinking chemistry in xenogeneic pericardial tissue offers much promise in extending bioprosthetic heart valve longevity. Bioprosthetic heart valves have 2 major advantages over mechanical valves: they do not require anticoagulation and they can be crimped for transcatheter deployment.
doi_str_mv 10.1093/ejcts/ezaa257
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_32893300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ejcts/ezaa257</oup_id><sourcerecordid>2440666109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-c84ecb4ce25cd2f5783c318d4d66109e2f46d5f1de9398637c97c47c68b978963</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqUwsiKPLKFO7NgJGypPCYkFJLbIsW9alzQJtlPU_nrcBzAy3Yc-nXvPQeg8JlcxyekY5sq7MaylTFJxgIZxJmgkKHs_DD2JSSRyRgboxLk5IYTTRByjAU2ynFJChsjfgoK67mtpzVp60zZYNhpDMzUNgAWNlW2dq03zYZrpNZa4s-3CuDBg3csayy4spJph335Jqx0uTRs2zs_AG4VnIK3HS1kvAddtM4Wl8atTdFTJ2sHZvo7Q2_3d6-Qxen55eJrcPEeK8tRHKmOgSqYgSZVOqlRkVNE400xzHrxDUjGu0yrWkNM841SoXCgmFM_KXGQ5pyN0udMND3324HwRPt_YlQ20vSsSxgjfagU02qFbuxaqorNmIe2qiEmxAYpt0MU-6MBf7KX7cgH6l_5J9u9223f_aH0DjjmMTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440666109</pqid></control><display><type>article</type><title>Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Human, Paul ; Ofoegbu, Chima ; Ilsley, Helen ; Bezuidenhout, Deon ; de Villiers, Jandre ; Williams, David F ; Zilla, Peter</creator><creatorcontrib>Human, Paul ; Ofoegbu, Chima ; Ilsley, Helen ; Bezuidenhout, Deon ; de Villiers, Jandre ; Williams, David F ; Zilla, Peter</creatorcontrib><description>Abstract OBJECTIVES While decellularization has previously significantly improved the durability of bioprosthetic tissue, remnant immunogenicity may yet necessitate masking through crosslinking. To alleviate the fears of reintroducing the risk of calcific degeneration, we investigated the application of rationally designed crosslinking chemistry, capable of abrogating mineralization in isolation, in decellularized tissue. METHODS Bovine and porcine pericardium were decellularized using the standard Triton X/sodium deoxycholate/DNAse/RNAse methodology and thereafter combined incrementally with components of a four-stage high-density dialdehyde-based fixation regimen. Mechanical properties prior to, and calcium levels following, subcutaneous implantation for 6 and 10 weeks in rats were assessed. RESULTS Enhanced four-stage crosslinking, independent of decellularization, or decellularization followed by any of the crosslinking regimens, achieved sustained, near-elimination of tissue calcification. Decellularization additionally resulted in significantly lower tissue stiffness and higher fatigue resistance in all groups compared to their non-decellularized counterparts. CONCLUSIONS The dual approach of combining decellularization with enhanced crosslinking chemistry in xenogeneic pericardial tissue offers much promise in extending bioprosthetic heart valve longevity. Bioprosthetic heart valves have 2 major advantages over mechanical valves: they do not require anticoagulation and they can be crimped for transcatheter deployment.</description><identifier>ISSN: 1010-7940</identifier><identifier>EISSN: 1873-734X</identifier><identifier>DOI: 10.1093/ejcts/ezaa257</identifier><identifier>PMID: 32893300</identifier><language>eng</language><publisher>Germany: Oxford University Press</publisher><ispartof>European journal of cardio-thoracic surgery, 2020-12, Vol.58 (6), p.1192-1200</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-c84ecb4ce25cd2f5783c318d4d66109e2f46d5f1de9398637c97c47c68b978963</citedby><cites>FETCH-LOGICAL-c365t-c84ecb4ce25cd2f5783c318d4d66109e2f46d5f1de9398637c97c47c68b978963</cites><orcidid>0000-0002-6007-5827 ; 0000-0001-8052-7491 ; 0000-0003-4547-0287 ; 0000-0002-7873-1976 ; 0000-0001-5173-3157 ; 0000-0001-9502-4109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32893300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Human, Paul</creatorcontrib><creatorcontrib>Ofoegbu, Chima</creatorcontrib><creatorcontrib>Ilsley, Helen</creatorcontrib><creatorcontrib>Bezuidenhout, Deon</creatorcontrib><creatorcontrib>de Villiers, Jandre</creatorcontrib><creatorcontrib>Williams, David F</creatorcontrib><creatorcontrib>Zilla, Peter</creatorcontrib><title>Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity</title><title>European journal of cardio-thoracic surgery</title><addtitle>Eur J Cardiothorac Surg</addtitle><description>Abstract OBJECTIVES While decellularization has previously significantly improved the durability of bioprosthetic tissue, remnant immunogenicity may yet necessitate masking through crosslinking. To alleviate the fears of reintroducing the risk of calcific degeneration, we investigated the application of rationally designed crosslinking chemistry, capable of abrogating mineralization in isolation, in decellularized tissue. METHODS Bovine and porcine pericardium were decellularized using the standard Triton X/sodium deoxycholate/DNAse/RNAse methodology and thereafter combined incrementally with components of a four-stage high-density dialdehyde-based fixation regimen. Mechanical properties prior to, and calcium levels following, subcutaneous implantation for 6 and 10 weeks in rats were assessed. RESULTS Enhanced four-stage crosslinking, independent of decellularization, or decellularization followed by any of the crosslinking regimens, achieved sustained, near-elimination of tissue calcification. Decellularization additionally resulted in significantly lower tissue stiffness and higher fatigue resistance in all groups compared to their non-decellularized counterparts. CONCLUSIONS The dual approach of combining decellularization with enhanced crosslinking chemistry in xenogeneic pericardial tissue offers much promise in extending bioprosthetic heart valve longevity. Bioprosthetic heart valves have 2 major advantages over mechanical valves: they do not require anticoagulation and they can be crimped for transcatheter deployment.</description><issn>1010-7940</issn><issn>1873-734X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EoqUwsiKPLKFO7NgJGypPCYkFJLbIsW9alzQJtlPU_nrcBzAy3Yc-nXvPQeg8JlcxyekY5sq7MaylTFJxgIZxJmgkKHs_DD2JSSRyRgboxLk5IYTTRByjAU2ynFJChsjfgoK67mtpzVp60zZYNhpDMzUNgAWNlW2dq03zYZrpNZa4s-3CuDBg3csayy4spJph335Jqx0uTRs2zs_AG4VnIK3HS1kvAddtM4Wl8atTdFTJ2sHZvo7Q2_3d6-Qxen55eJrcPEeK8tRHKmOgSqYgSZVOqlRkVNE400xzHrxDUjGu0yrWkNM841SoXCgmFM_KXGQ5pyN0udMND3324HwRPt_YlQ20vSsSxgjfagU02qFbuxaqorNmIe2qiEmxAYpt0MU-6MBf7KX7cgH6l_5J9u9223f_aH0DjjmMTg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Human, Paul</creator><creator>Ofoegbu, Chima</creator><creator>Ilsley, Helen</creator><creator>Bezuidenhout, Deon</creator><creator>de Villiers, Jandre</creator><creator>Williams, David F</creator><creator>Zilla, Peter</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6007-5827</orcidid><orcidid>https://orcid.org/0000-0001-8052-7491</orcidid><orcidid>https://orcid.org/0000-0003-4547-0287</orcidid><orcidid>https://orcid.org/0000-0002-7873-1976</orcidid><orcidid>https://orcid.org/0000-0001-5173-3157</orcidid><orcidid>https://orcid.org/0000-0001-9502-4109</orcidid></search><sort><creationdate>20201201</creationdate><title>Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity</title><author>Human, Paul ; Ofoegbu, Chima ; Ilsley, Helen ; Bezuidenhout, Deon ; de Villiers, Jandre ; Williams, David F ; Zilla, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-c84ecb4ce25cd2f5783c318d4d66109e2f46d5f1de9398637c97c47c68b978963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Human, Paul</creatorcontrib><creatorcontrib>Ofoegbu, Chima</creatorcontrib><creatorcontrib>Ilsley, Helen</creatorcontrib><creatorcontrib>Bezuidenhout, Deon</creatorcontrib><creatorcontrib>de Villiers, Jandre</creatorcontrib><creatorcontrib>Williams, David F</creatorcontrib><creatorcontrib>Zilla, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of cardio-thoracic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Human, Paul</au><au>Ofoegbu, Chima</au><au>Ilsley, Helen</au><au>Bezuidenhout, Deon</au><au>de Villiers, Jandre</au><au>Williams, David F</au><au>Zilla, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity</atitle><jtitle>European journal of cardio-thoracic surgery</jtitle><addtitle>Eur J Cardiothorac Surg</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>58</volume><issue>6</issue><spage>1192</spage><epage>1200</epage><pages>1192-1200</pages><issn>1010-7940</issn><eissn>1873-734X</eissn><abstract>Abstract OBJECTIVES While decellularization has previously significantly improved the durability of bioprosthetic tissue, remnant immunogenicity may yet necessitate masking through crosslinking. To alleviate the fears of reintroducing the risk of calcific degeneration, we investigated the application of rationally designed crosslinking chemistry, capable of abrogating mineralization in isolation, in decellularized tissue. METHODS Bovine and porcine pericardium were decellularized using the standard Triton X/sodium deoxycholate/DNAse/RNAse methodology and thereafter combined incrementally with components of a four-stage high-density dialdehyde-based fixation regimen. Mechanical properties prior to, and calcium levels following, subcutaneous implantation for 6 and 10 weeks in rats were assessed. RESULTS Enhanced four-stage crosslinking, independent of decellularization, or decellularization followed by any of the crosslinking regimens, achieved sustained, near-elimination of tissue calcification. Decellularization additionally resulted in significantly lower tissue stiffness and higher fatigue resistance in all groups compared to their non-decellularized counterparts. CONCLUSIONS The dual approach of combining decellularization with enhanced crosslinking chemistry in xenogeneic pericardial tissue offers much promise in extending bioprosthetic heart valve longevity. Bioprosthetic heart valves have 2 major advantages over mechanical valves: they do not require anticoagulation and they can be crimped for transcatheter deployment.</abstract><cop>Germany</cop><pub>Oxford University Press</pub><pmid>32893300</pmid><doi>10.1093/ejcts/ezaa257</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6007-5827</orcidid><orcidid>https://orcid.org/0000-0001-8052-7491</orcidid><orcidid>https://orcid.org/0000-0003-4547-0287</orcidid><orcidid>https://orcid.org/0000-0002-7873-1976</orcidid><orcidid>https://orcid.org/0000-0001-5173-3157</orcidid><orcidid>https://orcid.org/0000-0001-9502-4109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-7940
ispartof European journal of cardio-thoracic surgery, 2020-12, Vol.58 (6), p.1192-1200
issn 1010-7940
1873-734X
language eng
recordid cdi_pubmed_primary_32893300
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decellularization%20and%20engineered%20crosslinking:%20a%20promising%20dual%20approach%20towards%20bioprosthetic%20heart%20valve%20longevity&rft.jtitle=European%20journal%20of%20cardio-thoracic%20surgery&rft.au=Human,%20Paul&rft.date=2020-12-01&rft.volume=58&rft.issue=6&rft.spage=1192&rft.epage=1200&rft.pages=1192-1200&rft.issn=1010-7940&rft.eissn=1873-734X&rft_id=info:doi/10.1093/ejcts/ezaa257&rft_dat=%3Cproquest_cross%3E2440666109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440666109&rft_id=info:pmid/32893300&rft_oup_id=10.1093/ejcts/ezaa257&rfr_iscdi=true