A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-12, Vol.44 (12), p.8766-8778 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8778 |
---|---|
container_issue | 12 |
container_start_page | 8766 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Clough, James R. Byrne, Nicholas Oksuz, Ilkay Zimmer, Veronika A. Schnabel, Julia A. King, Andrew P. |
description | We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels. |
doi_str_mv | 10.1109/TPAMI.2020.3013679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32886606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186664</ieee_id><sourcerecordid>2440471578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-5206482fe3a7b8993322bdaf1e5580e07c7d2ac9311c2fa7a7188593c61268693</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS0EomnhD4CELLFhM8GP8WuDFAqlkYKoRLo2jnNncDUzDvYMUv99nSZEwMqSz3ePzr0HoVeUzCkl5v36ZvF1OWeEkTknlEtlnqAZNdxUXHDzFM0IlazSmukzdJ7zHSG0FoQ_R2ecaS0lkTP0Y4HXcRe72AbvOryKOeOrafBjiANuYsKfAHbVClwawtDijy7DFi971wL-Dm0Pw-ge0du8l28g5ZDH8ouvY793vX-BnjWuy_Dy-F6g26vP68vravXty_Jysap8yTRWghFZa9YAd2qjjeGcsc3WNRSE0ASI8mrLnDecUs8ap5yiWgvDvaRMamn4Bfpw8N1Nmx62vmRIrrO7FHqX7m10wf6rDOGnbeNvaxSjgsli8O5okOKvCfJo-5A9dJ0bIE7ZsromtaJC6YK-_Q-9i1MaynqWKV5zLZRUhWIHyqdy1QTNKQwldl-gfSzQ7gu0xwLL0Ju_1ziN_GmsAK8PQACAk2xoUWXNHwCMM59U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734385767</pqid></control><display><type>article</type><title>A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Clough, James R. ; Byrne, Nicholas ; Oksuz, Ilkay ; Zimmer, Veronika A. ; Schnabel, Julia A. ; King, Andrew P.</creator><creatorcontrib>Clough, James R. ; Byrne, Nicholas ; Oksuz, Ilkay ; Zimmer, Veronika A. ; Schnabel, Julia A. ; King, Andrew P.</creatorcontrib><description>We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3013679</identifier><identifier>PMID: 32886606</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; convolutional neural networks ; Data analysis ; Deep Learning ; Homology ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Labels ; Loss measurement ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; medical imaging ; Myocardium ; Network topologies ; Network topology ; Neural networks ; Neural Networks, Computer ; Object recognition ; persistent homology ; Segmentation ; Shape ; Topology ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-12, Vol.44 (12), p.8766-8778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2020 Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-5206482fe3a7b8993322bdaf1e5580e07c7d2ac9311c2fa7a7188593c61268693</citedby><cites>FETCH-LOGICAL-c450t-5206482fe3a7b8993322bdaf1e5580e07c7d2ac9311c2fa7a7188593c61268693</cites><orcidid>0000-0001-6107-3009 ; 0000-0003-3401-9570 ; 0000-0002-9965-7015 ; 0000-0001-6478-0534 ; 0000-0002-9135-0545 ; 0000-0002-5093-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186664$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32886606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clough, James R.</creatorcontrib><creatorcontrib>Byrne, Nicholas</creatorcontrib><creatorcontrib>Oksuz, Ilkay</creatorcontrib><creatorcontrib>Zimmer, Veronika A.</creatorcontrib><creatorcontrib>Schnabel, Julia A.</creatorcontrib><creatorcontrib>King, Andrew P.</creatorcontrib><title>A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.</description><subject>Algorithms</subject><subject>convolutional neural networks</subject><subject>Data analysis</subject><subject>Deep Learning</subject><subject>Homology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Loss measurement</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>medical imaging</subject><subject>Myocardium</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>persistent homology</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Topology</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEUhS0EomnhD4CELLFhM8GP8WuDFAqlkYKoRLo2jnNncDUzDvYMUv99nSZEwMqSz3ePzr0HoVeUzCkl5v36ZvF1OWeEkTknlEtlnqAZNdxUXHDzFM0IlazSmukzdJ7zHSG0FoQ_R2ecaS0lkTP0Y4HXcRe72AbvOryKOeOrafBjiANuYsKfAHbVClwawtDijy7DFi971wL-Dm0Pw-ge0du8l28g5ZDH8ouvY793vX-BnjWuy_Dy-F6g26vP68vravXty_Jysap8yTRWghFZa9YAd2qjjeGcsc3WNRSE0ASI8mrLnDecUs8ap5yiWgvDvaRMamn4Bfpw8N1Nmx62vmRIrrO7FHqX7m10wf6rDOGnbeNvaxSjgsli8O5okOKvCfJo-5A9dJ0bIE7ZsromtaJC6YK-_Q-9i1MaynqWKV5zLZRUhWIHyqdy1QTNKQwldl-gfSzQ7gu0xwLL0Ju_1ziN_GmsAK8PQACAk2xoUWXNHwCMM59U</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Clough, James R.</creator><creator>Byrne, Nicholas</creator><creator>Oksuz, Ilkay</creator><creator>Zimmer, Veronika A.</creator><creator>Schnabel, Julia A.</creator><creator>King, Andrew P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6107-3009</orcidid><orcidid>https://orcid.org/0000-0003-3401-9570</orcidid><orcidid>https://orcid.org/0000-0002-9965-7015</orcidid><orcidid>https://orcid.org/0000-0001-6478-0534</orcidid><orcidid>https://orcid.org/0000-0002-9135-0545</orcidid><orcidid>https://orcid.org/0000-0002-5093-5854</orcidid></search><sort><creationdate>20221201</creationdate><title>A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology</title><author>Clough, James R. ; Byrne, Nicholas ; Oksuz, Ilkay ; Zimmer, Veronika A. ; Schnabel, Julia A. ; King, Andrew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-5206482fe3a7b8993322bdaf1e5580e07c7d2ac9311c2fa7a7188593c61268693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>convolutional neural networks</topic><topic>Data analysis</topic><topic>Deep Learning</topic><topic>Homology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Loss measurement</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>medical imaging</topic><topic>Myocardium</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>persistent homology</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Topology</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clough, James R.</creatorcontrib><creatorcontrib>Byrne, Nicholas</creatorcontrib><creatorcontrib>Oksuz, Ilkay</creatorcontrib><creatorcontrib>Zimmer, Veronika A.</creatorcontrib><creatorcontrib>Schnabel, Julia A.</creatorcontrib><creatorcontrib>King, Andrew P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clough, James R.</au><au>Byrne, Nicholas</au><au>Oksuz, Ilkay</au><au>Zimmer, Veronika A.</au><au>Schnabel, Julia A.</au><au>King, Andrew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>44</volume><issue>12</issue><spage>8766</spage><epage>8778</epage><pages>8766-8778</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32886606</pmid><doi>10.1109/TPAMI.2020.3013679</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6107-3009</orcidid><orcidid>https://orcid.org/0000-0003-3401-9570</orcidid><orcidid>https://orcid.org/0000-0002-9965-7015</orcidid><orcidid>https://orcid.org/0000-0001-6478-0534</orcidid><orcidid>https://orcid.org/0000-0002-9135-0545</orcidid><orcidid>https://orcid.org/0000-0002-5093-5854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-12, Vol.44 (12), p.8766-8778 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_32886606 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithms convolutional neural networks Data analysis Deep Learning Homology Image Processing, Computer-Assisted - methods Image segmentation Labels Loss measurement Magnetic resonance imaging Magnetic Resonance Imaging - methods medical imaging Myocardium Network topologies Network topology Neural networks Neural Networks, Computer Object recognition persistent homology Segmentation Shape Topology Training |
title | A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Topological%20Loss%20Function%20for%20Deep-Learning%20Based%20Image%20Segmentation%20Using%20Persistent%20Homology&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Clough,%20James%20R.&rft.date=2022-12-01&rft.volume=44&rft.issue=12&rft.spage=8766&rft.epage=8778&rft.pages=8766-8778&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3013679&rft_dat=%3Cproquest_pubme%3E2440471578%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734385767&rft_id=info:pmid/32886606&rft_ieee_id=9186664&rfr_iscdi=true |