Drivers underpinning the malignant transformation of giant cell tumour of bone

The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2020-12, Vol.252 (4), p.433-440
Hauptverfasser: Fittall, Matthew W, Lyskjær, Iben, Ellery, Peter, Lombard, Patrick, Ijaz, Jannat, Strobl, Anna‐Christina, Oukrif, Dahmane, Tarabichi, Maxime, Sill, Martin, Koelsche, Christian, Mechtersheimer, Gunhild, Demeulemeester, Jonas, Tirabosco, Roberto, Amary, Fernanda, Campbell, Peter J, Pfister, Stefan M, Jones, David TW, Pillay, Nischalan, Van Loo, Peter, Behjati, Sam, Flanagan, Adrienne M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 4
container_start_page 433
container_title The Journal of pathology
container_volume 252
creator Fittall, Matthew W
Lyskjær, Iben
Ellery, Peter
Lombard, Patrick
Ijaz, Jannat
Strobl, Anna‐Christina
Oukrif, Dahmane
Tarabichi, Maxime
Sill, Martin
Koelsche, Christian
Mechtersheimer, Gunhild
Demeulemeester, Jonas
Tirabosco, Roberto
Amary, Fernanda
Campbell, Peter J
Pfister, Stefan M
Jones, David TW
Pillay, Nischalan
Van Loo, Peter
Behjati, Sam
Flanagan, Adrienne M
description The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3‐mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3‐mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
doi_str_mv 10.1002/path.5537
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32866294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461583313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-da42f73e0122890465623baf971d2fec4f09f760390452de7bce03b1d21471443</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokNhwQugSKxQlda_cbxBqoZCkSpgUdaWk1zPuErswXaK-vY4nWEECyRWtu75fHx8jNBrgs8JxvRiZ_L2XAgmn6AVwaqpVauap2hVNFozTuQJepHSHcZYKSGeoxNG26ahiq_Qlw_R3UNM1ewHiDvnvfObKm-hmszoNt74XOVofLIhTia74Ktgq41b5j2MY5XnKcxxGXbBw0v0zJoxwavDeoq-f7y6XV_XN18_fV5f3tQ950zWg-HUSgaYUNoqzBvRUNYZqyQZqIWeW6ysbDArmqADyK4HzLoiEi5JsThF7_e-u7mbYOjBl5Cj3kU3mfigg3H6b8W7rd6Ee91yRokgxeDtwSCGHzOkrO_KM3zJrClviGgZI6xQ7_ZUH0NKEezxBoL1Ur1eqtdL9YV982ekI_m76wK0e-AndMGm3oHv4YiVzxFSUCVF2WGydvmx7XWYfS5Hz_7_aKEvDrQb4eHfkfW3y9vrx-y_AKtmr7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461583313</pqid></control><display><type>article</type><title>Drivers underpinning the malignant transformation of giant cell tumour of bone</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Fittall, Matthew W ; Lyskjær, Iben ; Ellery, Peter ; Lombard, Patrick ; Ijaz, Jannat ; Strobl, Anna‐Christina ; Oukrif, Dahmane ; Tarabichi, Maxime ; Sill, Martin ; Koelsche, Christian ; Mechtersheimer, Gunhild ; Demeulemeester, Jonas ; Tirabosco, Roberto ; Amary, Fernanda ; Campbell, Peter J ; Pfister, Stefan M ; Jones, David TW ; Pillay, Nischalan ; Van Loo, Peter ; Behjati, Sam ; Flanagan, Adrienne M</creator><creatorcontrib>Fittall, Matthew W ; Lyskjær, Iben ; Ellery, Peter ; Lombard, Patrick ; Ijaz, Jannat ; Strobl, Anna‐Christina ; Oukrif, Dahmane ; Tarabichi, Maxime ; Sill, Martin ; Koelsche, Christian ; Mechtersheimer, Gunhild ; Demeulemeester, Jonas ; Tirabosco, Roberto ; Amary, Fernanda ; Campbell, Peter J ; Pfister, Stefan M ; Jones, David TW ; Pillay, Nischalan ; Van Loo, Peter ; Behjati, Sam ; Flanagan, Adrienne M</creatorcontrib><description>The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3‐mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3‐mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley &amp; Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.5537</identifier><identifier>PMID: 32866294</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aneuploidy ; Benign ; bone ; Bone cancer ; Bone Neoplasms - genetics ; Bone Neoplasms - pathology ; Bone tumors ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Cyclin D1 ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; DNA sequencing ; drivers ; epigenetic ; Genetic transformation ; genomics ; Giant Cell Tumor of Bone - genetics ; Giant Cell Tumor of Bone - pathology ; giant cell tumour ; histone ; Histones ; Humans ; Life Sciences &amp; Biomedicine ; Lungs ; Metastases ; Metastasis ; methylation ; Mutation ; Oncology ; Original Paper ; Original Papers ; osteoblast ; osteoclast ; Pathology ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; Sarcoma ; Science &amp; Technology ; Telomeres ; transformation ; Tumors ; Whole Genome Sequencing</subject><ispartof>The Journal of pathology, 2020-12, Vol.252 (4), p.433-440</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.</rights><rights>2020 The Authors. The Journal of Pathology published by John Wiley &amp; Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000575297500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4437-da42f73e0122890465623baf971d2fec4f09f760390452de7bce03b1d21471443</citedby><cites>FETCH-LOGICAL-c4437-da42f73e0122890465623baf971d2fec4f09f760390452de7bce03b1d21471443</cites><orcidid>0000-0002-5172-4100 ; 0000-0002-2832-1303 ; 0000-0003-3446-1182 ; 0000-0002-2660-2478 ; 0000-0003-0579-4105 ; 0000-0002-1635-2348 ; 0000-0002-2036-5141 ; 0000-0001-9034-9983 ; 0000-0002-5447-5322 ; 0000-0001-8645-158X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.5537$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.5537$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32866294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fittall, Matthew W</creatorcontrib><creatorcontrib>Lyskjær, Iben</creatorcontrib><creatorcontrib>Ellery, Peter</creatorcontrib><creatorcontrib>Lombard, Patrick</creatorcontrib><creatorcontrib>Ijaz, Jannat</creatorcontrib><creatorcontrib>Strobl, Anna‐Christina</creatorcontrib><creatorcontrib>Oukrif, Dahmane</creatorcontrib><creatorcontrib>Tarabichi, Maxime</creatorcontrib><creatorcontrib>Sill, Martin</creatorcontrib><creatorcontrib>Koelsche, Christian</creatorcontrib><creatorcontrib>Mechtersheimer, Gunhild</creatorcontrib><creatorcontrib>Demeulemeester, Jonas</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Amary, Fernanda</creatorcontrib><creatorcontrib>Campbell, Peter J</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Jones, David TW</creatorcontrib><creatorcontrib>Pillay, Nischalan</creatorcontrib><creatorcontrib>Van Loo, Peter</creatorcontrib><creatorcontrib>Behjati, Sam</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><title>Drivers underpinning the malignant transformation of giant cell tumour of bone</title><title>The Journal of pathology</title><addtitle>J PATHOL</addtitle><addtitle>J Pathol</addtitle><description>The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3‐mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3‐mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley &amp; Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.</description><subject>Aneuploidy</subject><subject>Benign</subject><subject>bone</subject><subject>Bone cancer</subject><subject>Bone Neoplasms - genetics</subject><subject>Bone Neoplasms - pathology</subject><subject>Bone tumors</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Cyclin D1</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA sequencing</subject><subject>drivers</subject><subject>epigenetic</subject><subject>Genetic transformation</subject><subject>genomics</subject><subject>Giant Cell Tumor of Bone - genetics</subject><subject>Giant Cell Tumor of Bone - pathology</subject><subject>giant cell tumour</subject><subject>histone</subject><subject>Histones</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lungs</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>methylation</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>osteoblast</subject><subject>osteoclast</subject><subject>Pathology</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Promoter Regions, Genetic</subject><subject>Sarcoma</subject><subject>Science &amp; Technology</subject><subject>Telomeres</subject><subject>transformation</subject><subject>Tumors</subject><subject>Whole Genome Sequencing</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokNhwQugSKxQlda_cbxBqoZCkSpgUdaWk1zPuErswXaK-vY4nWEECyRWtu75fHx8jNBrgs8JxvRiZ_L2XAgmn6AVwaqpVauap2hVNFozTuQJepHSHcZYKSGeoxNG26ahiq_Qlw_R3UNM1ewHiDvnvfObKm-hmszoNt74XOVofLIhTia74Ktgq41b5j2MY5XnKcxxGXbBw0v0zJoxwavDeoq-f7y6XV_XN18_fV5f3tQ950zWg-HUSgaYUNoqzBvRUNYZqyQZqIWeW6ysbDArmqADyK4HzLoiEi5JsThF7_e-u7mbYOjBl5Cj3kU3mfigg3H6b8W7rd6Ee91yRokgxeDtwSCGHzOkrO_KM3zJrClviGgZI6xQ7_ZUH0NKEezxBoL1Ur1eqtdL9YV982ekI_m76wK0e-AndMGm3oHv4YiVzxFSUCVF2WGydvmx7XWYfS5Hz_7_aKEvDrQb4eHfkfW3y9vrx-y_AKtmr7A</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fittall, Matthew W</creator><creator>Lyskjær, Iben</creator><creator>Ellery, Peter</creator><creator>Lombard, Patrick</creator><creator>Ijaz, Jannat</creator><creator>Strobl, Anna‐Christina</creator><creator>Oukrif, Dahmane</creator><creator>Tarabichi, Maxime</creator><creator>Sill, Martin</creator><creator>Koelsche, Christian</creator><creator>Mechtersheimer, Gunhild</creator><creator>Demeulemeester, Jonas</creator><creator>Tirabosco, Roberto</creator><creator>Amary, Fernanda</creator><creator>Campbell, Peter J</creator><creator>Pfister, Stefan M</creator><creator>Jones, David TW</creator><creator>Pillay, Nischalan</creator><creator>Van Loo, Peter</creator><creator>Behjati, Sam</creator><creator>Flanagan, Adrienne M</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5172-4100</orcidid><orcidid>https://orcid.org/0000-0002-2832-1303</orcidid><orcidid>https://orcid.org/0000-0003-3446-1182</orcidid><orcidid>https://orcid.org/0000-0002-2660-2478</orcidid><orcidid>https://orcid.org/0000-0003-0579-4105</orcidid><orcidid>https://orcid.org/0000-0002-1635-2348</orcidid><orcidid>https://orcid.org/0000-0002-2036-5141</orcidid><orcidid>https://orcid.org/0000-0001-9034-9983</orcidid><orcidid>https://orcid.org/0000-0002-5447-5322</orcidid><orcidid>https://orcid.org/0000-0001-8645-158X</orcidid></search><sort><creationdate>202012</creationdate><title>Drivers underpinning the malignant transformation of giant cell tumour of bone</title><author>Fittall, Matthew W ; Lyskjær, Iben ; Ellery, Peter ; Lombard, Patrick ; Ijaz, Jannat ; Strobl, Anna‐Christina ; Oukrif, Dahmane ; Tarabichi, Maxime ; Sill, Martin ; Koelsche, Christian ; Mechtersheimer, Gunhild ; Demeulemeester, Jonas ; Tirabosco, Roberto ; Amary, Fernanda ; Campbell, Peter J ; Pfister, Stefan M ; Jones, David TW ; Pillay, Nischalan ; Van Loo, Peter ; Behjati, Sam ; Flanagan, Adrienne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-da42f73e0122890465623baf971d2fec4f09f760390452de7bce03b1d21471443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aneuploidy</topic><topic>Benign</topic><topic>bone</topic><topic>Bone cancer</topic><topic>Bone Neoplasms - genetics</topic><topic>Bone Neoplasms - pathology</topic><topic>Bone tumors</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Cyclin D1</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA sequencing</topic><topic>drivers</topic><topic>epigenetic</topic><topic>Genetic transformation</topic><topic>genomics</topic><topic>Giant Cell Tumor of Bone - genetics</topic><topic>Giant Cell Tumor of Bone - pathology</topic><topic>giant cell tumour</topic><topic>histone</topic><topic>Histones</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lungs</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>methylation</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>osteoblast</topic><topic>osteoclast</topic><topic>Pathology</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Promoter Regions, Genetic</topic><topic>Sarcoma</topic><topic>Science &amp; Technology</topic><topic>Telomeres</topic><topic>transformation</topic><topic>Tumors</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fittall, Matthew W</creatorcontrib><creatorcontrib>Lyskjær, Iben</creatorcontrib><creatorcontrib>Ellery, Peter</creatorcontrib><creatorcontrib>Lombard, Patrick</creatorcontrib><creatorcontrib>Ijaz, Jannat</creatorcontrib><creatorcontrib>Strobl, Anna‐Christina</creatorcontrib><creatorcontrib>Oukrif, Dahmane</creatorcontrib><creatorcontrib>Tarabichi, Maxime</creatorcontrib><creatorcontrib>Sill, Martin</creatorcontrib><creatorcontrib>Koelsche, Christian</creatorcontrib><creatorcontrib>Mechtersheimer, Gunhild</creatorcontrib><creatorcontrib>Demeulemeester, Jonas</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Amary, Fernanda</creatorcontrib><creatorcontrib>Campbell, Peter J</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Jones, David TW</creatorcontrib><creatorcontrib>Pillay, Nischalan</creatorcontrib><creatorcontrib>Van Loo, Peter</creatorcontrib><creatorcontrib>Behjati, Sam</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fittall, Matthew W</au><au>Lyskjær, Iben</au><au>Ellery, Peter</au><au>Lombard, Patrick</au><au>Ijaz, Jannat</au><au>Strobl, Anna‐Christina</au><au>Oukrif, Dahmane</au><au>Tarabichi, Maxime</au><au>Sill, Martin</au><au>Koelsche, Christian</au><au>Mechtersheimer, Gunhild</au><au>Demeulemeester, Jonas</au><au>Tirabosco, Roberto</au><au>Amary, Fernanda</au><au>Campbell, Peter J</au><au>Pfister, Stefan M</au><au>Jones, David TW</au><au>Pillay, Nischalan</au><au>Van Loo, Peter</au><au>Behjati, Sam</au><au>Flanagan, Adrienne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers underpinning the malignant transformation of giant cell tumour of bone</atitle><jtitle>The Journal of pathology</jtitle><stitle>J PATHOL</stitle><addtitle>J Pathol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>252</volume><issue>4</issue><spage>433</spage><epage>440</epage><pages>433-440</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3‐mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3‐mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley &amp; Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>32866294</pmid><doi>10.1002/path.5537</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5172-4100</orcidid><orcidid>https://orcid.org/0000-0002-2832-1303</orcidid><orcidid>https://orcid.org/0000-0003-3446-1182</orcidid><orcidid>https://orcid.org/0000-0002-2660-2478</orcidid><orcidid>https://orcid.org/0000-0003-0579-4105</orcidid><orcidid>https://orcid.org/0000-0002-1635-2348</orcidid><orcidid>https://orcid.org/0000-0002-2036-5141</orcidid><orcidid>https://orcid.org/0000-0001-9034-9983</orcidid><orcidid>https://orcid.org/0000-0002-5447-5322</orcidid><orcidid>https://orcid.org/0000-0001-8645-158X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2020-12, Vol.252 (4), p.433-440
issn 0022-3417
1096-9896
language eng
recordid cdi_pubmed_primary_32866294
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aneuploidy
Benign
bone
Bone cancer
Bone Neoplasms - genetics
Bone Neoplasms - pathology
Bone tumors
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - pathology
Cyclin D1
Deoxyribonucleic acid
DNA
DNA Methylation
DNA sequencing
drivers
epigenetic
Genetic transformation
genomics
Giant Cell Tumor of Bone - genetics
Giant Cell Tumor of Bone - pathology
giant cell tumour
histone
Histones
Humans
Life Sciences & Biomedicine
Lungs
Metastases
Metastasis
methylation
Mutation
Oncology
Original Paper
Original Papers
osteoblast
osteoclast
Pathology
Polymorphism, Single Nucleotide
Promoter Regions, Genetic
Sarcoma
Science & Technology
Telomeres
transformation
Tumors
Whole Genome Sequencing
title Drivers underpinning the malignant transformation of giant cell tumour of bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20underpinning%20the%20malignant%20transformation%20of%20giant%20cell%20tumour%20of%20bone&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Fittall,%20Matthew%20W&rft.date=2020-12&rft.volume=252&rft.issue=4&rft.spage=433&rft.epage=440&rft.pages=433-440&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.5537&rft_dat=%3Cproquest_pubme%3E2461583313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461583313&rft_id=info:pmid/32866294&rfr_iscdi=true