Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment

Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2020-10, Vol.69 (10), p.2075-2085
1. Verfasser: Dennis, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2085
container_issue 10
container_start_page 2075
container_title Diabetes (New York, N.Y.)
container_volume 69
creator Dennis, John M
description Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.
doi_str_mv 10.2337/dbi20-0002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32843566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437400953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxYNU3HXbl34ACfSlFEbzZ2Yy40Oh2KoLioXuQt9CJrmjkZlkmswI-ukbd1VU8pCH-zsn5-Yg9JmSQ8a5ODKNZSQjhLAdNKc1rzPOxN8PaE4IZRkVtZih_RhvE1Gms4dmnFU5L8pyjobfAbSN1jt8CcZq6wBbh1f3A2CGf1rVwAjxGK-jddd46Yy9s2ZSnX0Ag5M2ScaN2BvoIh49vhpG26cx_gMdbIe-xasAauzBjR_Rbqu6CJ-e7gVan_5anZxnF1dny5MfF5nOSTlmjcppq3kDgkEhoBRUV0S1uuCc1zmlVDGlykbUbV1VbUEqUjRNbTgYUbSUEb5A37e-w9T0YHR6OqhODsH2KtxLr6x8O3H2Rl77OykKUla8TAZfnwyC_zdBHGVvo4auUw78FCXLucgJqVOiBfryDr31U3BpvUQVNKcifXeivm0pHXyMAdqXMJTIxyLlpkj5WGSCD17Hf0Gfm-P_AYHemgc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451417843</pqid></control><display><type>article</type><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dennis, John M</creator><creatorcontrib>Dennis, John M</creatorcontrib><description>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/dbi20-0002</identifier><identifier>PMID: 32843566</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Clinical trials ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Dipeptidyl Peptidase 4 - metabolism ; Dipeptidyl-peptidase IV ; Dipeptidyl-Peptidase IV Inhibitors - therapeutic use ; Female ; GLP-1 receptor agonists ; Glucagon ; Glucagon-like peptide 1 ; Glucagon-Like Peptide 1 - metabolism ; Glycated Hemoglobin - metabolism ; Humans ; Hypoglycemic Agents - therapeutic use ; Male ; Metformin ; Metformin - therapeutic use ; Peptidase ; Precision medicine ; Precision Medicine - methods ; Prediction models ; Sodium-glucose cotransporter ; Sulfonylurea Compounds - therapeutic use ; Symposium ; Thiazolidinediones ; Thiazolidinediones - therapeutic use</subject><ispartof>Diabetes (New York, N.Y.), 2020-10, Vol.69 (10), p.2075-2085</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Oct 1, 2020</rights><rights>2020 by the American Diabetes Association 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</citedby><cites>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</cites><orcidid>0000-0002-7171-732X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32843566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dennis, John M</creatorcontrib><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</description><subject>Clinical trials</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Dipeptidyl Peptidase 4 - metabolism</subject><subject>Dipeptidyl-peptidase IV</subject><subject>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</subject><subject>Female</subject><subject>GLP-1 receptor agonists</subject><subject>Glucagon</subject><subject>Glucagon-like peptide 1</subject><subject>Glucagon-Like Peptide 1 - metabolism</subject><subject>Glycated Hemoglobin - metabolism</subject><subject>Humans</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Male</subject><subject>Metformin</subject><subject>Metformin - therapeutic use</subject><subject>Peptidase</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Prediction models</subject><subject>Sodium-glucose cotransporter</subject><subject>Sulfonylurea Compounds - therapeutic use</subject><subject>Symposium</subject><subject>Thiazolidinediones</subject><subject>Thiazolidinediones - therapeutic use</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9LHDEUxYNU3HXbl34ACfSlFEbzZ2Yy40Oh2KoLioXuQt9CJrmjkZlkmswI-ukbd1VU8pCH-zsn5-Yg9JmSQ8a5ODKNZSQjhLAdNKc1rzPOxN8PaE4IZRkVtZih_RhvE1Gms4dmnFU5L8pyjobfAbSN1jt8CcZq6wBbh1f3A2CGf1rVwAjxGK-jddd46Yy9s2ZSnX0Ag5M2ScaN2BvoIh49vhpG26cx_gMdbIe-xasAauzBjR_Rbqu6CJ-e7gVan_5anZxnF1dny5MfF5nOSTlmjcppq3kDgkEhoBRUV0S1uuCc1zmlVDGlykbUbV1VbUEqUjRNbTgYUbSUEb5A37e-w9T0YHR6OqhODsH2KtxLr6x8O3H2Rl77OykKUla8TAZfnwyC_zdBHGVvo4auUw78FCXLucgJqVOiBfryDr31U3BpvUQVNKcifXeivm0pHXyMAdqXMJTIxyLlpkj5WGSCD17Hf0Gfm-P_AYHemgc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Dennis, John M</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7171-732X</orcidid></search><sort><creationdate>20201001</creationdate><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><author>Dennis, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clinical trials</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Dipeptidyl Peptidase 4 - metabolism</topic><topic>Dipeptidyl-peptidase IV</topic><topic>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</topic><topic>Female</topic><topic>GLP-1 receptor agonists</topic><topic>Glucagon</topic><topic>Glucagon-like peptide 1</topic><topic>Glucagon-Like Peptide 1 - metabolism</topic><topic>Glycated Hemoglobin - metabolism</topic><topic>Humans</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Male</topic><topic>Metformin</topic><topic>Metformin - therapeutic use</topic><topic>Peptidase</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Prediction models</topic><topic>Sodium-glucose cotransporter</topic><topic>Sulfonylurea Compounds - therapeutic use</topic><topic>Symposium</topic><topic>Thiazolidinediones</topic><topic>Thiazolidinediones - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dennis, John M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dennis, John M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>69</volume><issue>10</issue><spage>2075</spage><epage>2085</epage><pages>2075-2085</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32843566</pmid><doi>10.2337/dbi20-0002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7171-732X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2020-10, Vol.69 (10), p.2075-2085
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmed_primary_32843566
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Clinical trials
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Dipeptidyl Peptidase 4 - metabolism
Dipeptidyl-peptidase IV
Dipeptidyl-Peptidase IV Inhibitors - therapeutic use
Female
GLP-1 receptor agonists
Glucagon
Glucagon-like peptide 1
Glucagon-Like Peptide 1 - metabolism
Glycated Hemoglobin - metabolism
Humans
Hypoglycemic Agents - therapeutic use
Male
Metformin
Metformin - therapeutic use
Peptidase
Precision medicine
Precision Medicine - methods
Prediction models
Sodium-glucose cotransporter
Sulfonylurea Compounds - therapeutic use
Symposium
Thiazolidinediones
Thiazolidinediones - therapeutic use
title Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20Medicine%20in%20Type%202%20Diabetes:%20Using%20Individualized%20Prediction%20Models%20to%20Optimize%20Selection%20of%20Treatment&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Dennis,%20John%20M&rft.date=2020-10-01&rft.volume=69&rft.issue=10&rft.spage=2075&rft.epage=2085&rft.pages=2075-2085&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/dbi20-0002&rft_dat=%3Cproquest_pubme%3E2437400953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451417843&rft_id=info:pmid/32843566&rfr_iscdi=true