Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment
Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2020-10, Vol.69 (10), p.2075-2085 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2085 |
---|---|
container_issue | 10 |
container_start_page | 2075 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 69 |
creator | Dennis, John M |
description | Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models. |
doi_str_mv | 10.2337/dbi20-0002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32843566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437400953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxYNU3HXbl34ACfSlFEbzZ2Yy40Oh2KoLioXuQt9CJrmjkZlkmswI-ukbd1VU8pCH-zsn5-Yg9JmSQ8a5ODKNZSQjhLAdNKc1rzPOxN8PaE4IZRkVtZih_RhvE1Gms4dmnFU5L8pyjobfAbSN1jt8CcZq6wBbh1f3A2CGf1rVwAjxGK-jddd46Yy9s2ZSnX0Ag5M2ScaN2BvoIh49vhpG26cx_gMdbIe-xasAauzBjR_Rbqu6CJ-e7gVan_5anZxnF1dny5MfF5nOSTlmjcppq3kDgkEhoBRUV0S1uuCc1zmlVDGlykbUbV1VbUEqUjRNbTgYUbSUEb5A37e-w9T0YHR6OqhODsH2KtxLr6x8O3H2Rl77OykKUla8TAZfnwyC_zdBHGVvo4auUw78FCXLucgJqVOiBfryDr31U3BpvUQVNKcifXeivm0pHXyMAdqXMJTIxyLlpkj5WGSCD17Hf0Gfm-P_AYHemgc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451417843</pqid></control><display><type>article</type><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dennis, John M</creator><creatorcontrib>Dennis, John M</creatorcontrib><description>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/dbi20-0002</identifier><identifier>PMID: 32843566</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Clinical trials ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Dipeptidyl Peptidase 4 - metabolism ; Dipeptidyl-peptidase IV ; Dipeptidyl-Peptidase IV Inhibitors - therapeutic use ; Female ; GLP-1 receptor agonists ; Glucagon ; Glucagon-like peptide 1 ; Glucagon-Like Peptide 1 - metabolism ; Glycated Hemoglobin - metabolism ; Humans ; Hypoglycemic Agents - therapeutic use ; Male ; Metformin ; Metformin - therapeutic use ; Peptidase ; Precision medicine ; Precision Medicine - methods ; Prediction models ; Sodium-glucose cotransporter ; Sulfonylurea Compounds - therapeutic use ; Symposium ; Thiazolidinediones ; Thiazolidinediones - therapeutic use</subject><ispartof>Diabetes (New York, N.Y.), 2020-10, Vol.69 (10), p.2075-2085</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Oct 1, 2020</rights><rights>2020 by the American Diabetes Association 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</citedby><cites>FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</cites><orcidid>0000-0002-7171-732X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32843566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dennis, John M</creatorcontrib><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</description><subject>Clinical trials</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Dipeptidyl Peptidase 4 - metabolism</subject><subject>Dipeptidyl-peptidase IV</subject><subject>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</subject><subject>Female</subject><subject>GLP-1 receptor agonists</subject><subject>Glucagon</subject><subject>Glucagon-like peptide 1</subject><subject>Glucagon-Like Peptide 1 - metabolism</subject><subject>Glycated Hemoglobin - metabolism</subject><subject>Humans</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Male</subject><subject>Metformin</subject><subject>Metformin - therapeutic use</subject><subject>Peptidase</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Prediction models</subject><subject>Sodium-glucose cotransporter</subject><subject>Sulfonylurea Compounds - therapeutic use</subject><subject>Symposium</subject><subject>Thiazolidinediones</subject><subject>Thiazolidinediones - therapeutic use</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9LHDEUxYNU3HXbl34ACfSlFEbzZ2Yy40Oh2KoLioXuQt9CJrmjkZlkmswI-ukbd1VU8pCH-zsn5-Yg9JmSQ8a5ODKNZSQjhLAdNKc1rzPOxN8PaE4IZRkVtZih_RhvE1Gms4dmnFU5L8pyjobfAbSN1jt8CcZq6wBbh1f3A2CGf1rVwAjxGK-jddd46Yy9s2ZSnX0Ag5M2ScaN2BvoIh49vhpG26cx_gMdbIe-xasAauzBjR_Rbqu6CJ-e7gVan_5anZxnF1dny5MfF5nOSTlmjcppq3kDgkEhoBRUV0S1uuCc1zmlVDGlykbUbV1VbUEqUjRNbTgYUbSUEb5A37e-w9T0YHR6OqhODsH2KtxLr6x8O3H2Rl77OykKUla8TAZfnwyC_zdBHGVvo4auUw78FCXLucgJqVOiBfryDr31U3BpvUQVNKcifXeivm0pHXyMAdqXMJTIxyLlpkj5WGSCD17Hf0Gfm-P_AYHemgc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Dennis, John M</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7171-732X</orcidid></search><sort><creationdate>20201001</creationdate><title>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</title><author>Dennis, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ba41fc3be72e57e671c80afc533394111a2aa6b79f988f50805bb9d3ed75f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clinical trials</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Dipeptidyl Peptidase 4 - metabolism</topic><topic>Dipeptidyl-peptidase IV</topic><topic>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</topic><topic>Female</topic><topic>GLP-1 receptor agonists</topic><topic>Glucagon</topic><topic>Glucagon-like peptide 1</topic><topic>Glucagon-Like Peptide 1 - metabolism</topic><topic>Glycated Hemoglobin - metabolism</topic><topic>Humans</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Male</topic><topic>Metformin</topic><topic>Metformin - therapeutic use</topic><topic>Peptidase</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Prediction models</topic><topic>Sodium-glucose cotransporter</topic><topic>Sulfonylurea Compounds - therapeutic use</topic><topic>Symposium</topic><topic>Thiazolidinediones</topic><topic>Thiazolidinediones - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dennis, John M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dennis, John M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>69</volume><issue>10</issue><spage>2075</spage><epage>2085</epage><pages>2075-2085</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Despite the known heterogeneity of type 2 diabetes and variable response to glucose lowering medications, current evidence on optimal treatment is predominantly based on average effects in clinical trials rather than individual-level characteristics. A precision medicine approach based on treatment response would aim to improve on this by identifying predictors of differential drug response for people based on their characteristics and then using this information to select optimal treatment. Recent research has demonstrated robust and clinically relevant differential drug response with all noninsulin treatments after metformin (sulfonylureas, thiazolidinediones, dipeptidyl peptidase 4 [DPP-4] inhibitors, glucagon-like peptide 1 [GLP-1] receptor agonists, and sodium-glucose cotransporter 2 [SGLT2] inhibitors) using routinely available clinical features. This Perspective reviews this current evidence and discusses how differences in drug response could inform selection of optimal type 2 diabetes treatment in the near future. It presents a novel framework for developing and testing precision medicine-based strategies to optimize treatment, harnessing existing routine clinical and trial data sources. This framework was recently applied to demonstrate that "subtype" approaches, in which people are classified into subgroups based on features reflecting underlying pathophysiology, are likely to have less clinical utility compared with approaches that combine the same features as continuous measures in probabilistic "individualized prediction" models.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32843566</pmid><doi>10.2337/dbi20-0002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7171-732X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2020-10, Vol.69 (10), p.2075-2085 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_pubmed_primary_32843566 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Clinical trials Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Dipeptidyl Peptidase 4 - metabolism Dipeptidyl-peptidase IV Dipeptidyl-Peptidase IV Inhibitors - therapeutic use Female GLP-1 receptor agonists Glucagon Glucagon-like peptide 1 Glucagon-Like Peptide 1 - metabolism Glycated Hemoglobin - metabolism Humans Hypoglycemic Agents - therapeutic use Male Metformin Metformin - therapeutic use Peptidase Precision medicine Precision Medicine - methods Prediction models Sodium-glucose cotransporter Sulfonylurea Compounds - therapeutic use Symposium Thiazolidinediones Thiazolidinediones - therapeutic use |
title | Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20Medicine%20in%20Type%202%20Diabetes:%20Using%20Individualized%20Prediction%20Models%20to%20Optimize%20Selection%20of%20Treatment&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Dennis,%20John%20M&rft.date=2020-10-01&rft.volume=69&rft.issue=10&rft.spage=2075&rft.epage=2085&rft.pages=2075-2085&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/dbi20-0002&rft_dat=%3Cproquest_pubme%3E2437400953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451417843&rft_id=info:pmid/32843566&rfr_iscdi=true |