Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone
A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and henc...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-09, Vol.22 (35), p.19522-19531 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19531 |
---|---|
container_issue | 35 |
container_start_page | 19522 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Berenbeim, Jacob A Wong, Natalie G. K Cockett, Martin C. R Berden, Giel Oomens, Jos Rijs, Anouk M Dessent, Caroline E. H |
description | A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm
−1
), on complexes of Na
+
, K
+
and Rb
+
bound to oxybenzone. The IR spectra reveal that K
+
and Rb
+
adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na
+
cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na
+
complex displaying a distinctive electronic spectrum compared to those of K
+
and Rb
+
, in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed.
Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter. |
doi_str_mv | 10.1039/d0cp03152f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32840272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437128376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_AgitqtF--WlF6KsDW_5keOsu1WQbBQPQ-Z5I1GZpIxyZSuf73prq7Qg6eXx_vwCO-L0DEl3yjh8swQPRJOC9btoEMqSj6XpBa723dVHqAPMT4QQmhB-T464KwWhFXsEKXf3thpwFol6519WpfcOWxsDNOYcLoHbF0KavA96KlXAd-vTPB34HDrnclAJTyAsSpBXPM4uagDZKB0sn9sWmHfYf931YJ78g4-or1O9RGOXuoM3S5_3Cwu5lfXPy8X51dzLXiZ5lypqqzrUlMtW9a1BVGS09yIQppCUAqgeFsZ1hkKnLUgi6qQFWFlKUUnaz5DXzd7x-AfJ4ipGWzU0PfKgZ9iwwSvKKt5VWb65T_64Kfg8u-yEqxmNWUkq9ON0sHHGKBrxmAHFVYNJc2_LJrvZPFrncUy408vK6c2n2dLX4-fwecNCFFvp29hNqPpsjl5z_Bnex6apA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442828120</pqid></control><display><type>article</type><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</creator><creatorcontrib>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</creatorcontrib><description>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm
−1
), on complexes of Na
+
, K
+
and Rb
+
bound to oxybenzone. The IR spectra reveal that K
+
and Rb
+
adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na
+
cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na
+
complex displaying a distinctive electronic spectrum compared to those of K
+
and Rb
+
, in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed.
Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp03152f</identifier><identifier>PMID: 32840272</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkali metals ; Benzophenones - chemistry ; Benzophenones - radiation effects ; Binding ; Cations ; Coordination Complexes - chemistry ; Coordination Complexes - radiation effects ; Decay ; Density Functional Theory ; Electronic spectra ; Excitation ; Free electron lasers ; Functional groups ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen-based energy ; Infrared lasers ; Infrared Rays ; Infrared spectroscopy ; Isomerism ; Metal ions ; Models, Chemical ; Molecular structure ; Photodissociation ; Potassium - chemistry ; Rubidium ; Rubidium - chemistry ; Sodium ; Sodium - chemistry ; Spectrophotometry, Infrared ; Spectrum analysis ; Sun screens ; Sunscreen ; Sunscreening Agents - chemistry ; Sunscreening Agents - radiation effects ; Ultraviolet lasers ; Ultraviolet Rays</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-09, Vol.22 (35), p.19522-19531</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</citedby><cites>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</cites><orcidid>0000-0003-1500-922X ; 0000-0002-0730-7852 ; 0000-0002-2717-1278 ; 0000-0003-4944-0413 ; 0000-0002-3154-038X ; 0000-0002-7446-9907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32840272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berenbeim, Jacob A</creatorcontrib><creatorcontrib>Wong, Natalie G. K</creatorcontrib><creatorcontrib>Cockett, Martin C. R</creatorcontrib><creatorcontrib>Berden, Giel</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>Rijs, Anouk M</creatorcontrib><creatorcontrib>Dessent, Caroline E. H</creatorcontrib><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm
−1
), on complexes of Na
+
, K
+
and Rb
+
bound to oxybenzone. The IR spectra reveal that K
+
and Rb
+
adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na
+
cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na
+
complex displaying a distinctive electronic spectrum compared to those of K
+
and Rb
+
, in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed.
Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</description><subject>Alkali metals</subject><subject>Benzophenones - chemistry</subject><subject>Benzophenones - radiation effects</subject><subject>Binding</subject><subject>Cations</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - radiation effects</subject><subject>Decay</subject><subject>Density Functional Theory</subject><subject>Electronic spectra</subject><subject>Excitation</subject><subject>Free electron lasers</subject><subject>Functional groups</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen-based energy</subject><subject>Infrared lasers</subject><subject>Infrared Rays</subject><subject>Infrared spectroscopy</subject><subject>Isomerism</subject><subject>Metal ions</subject><subject>Models, Chemical</subject><subject>Molecular structure</subject><subject>Photodissociation</subject><subject>Potassium - chemistry</subject><subject>Rubidium</subject><subject>Rubidium - chemistry</subject><subject>Sodium</subject><subject>Sodium - chemistry</subject><subject>Spectrophotometry, Infrared</subject><subject>Spectrum analysis</subject><subject>Sun screens</subject><subject>Sunscreen</subject><subject>Sunscreening Agents - chemistry</subject><subject>Sunscreening Agents - radiation effects</subject><subject>Ultraviolet lasers</subject><subject>Ultraviolet Rays</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9LHDEUB_AgitqtF--WlF6KsDW_5keOsu1WQbBQPQ-Z5I1GZpIxyZSuf73prq7Qg6eXx_vwCO-L0DEl3yjh8swQPRJOC9btoEMqSj6XpBa723dVHqAPMT4QQmhB-T464KwWhFXsEKXf3thpwFol6519WpfcOWxsDNOYcLoHbF0KavA96KlXAd-vTPB34HDrnclAJTyAsSpBXPM4uagDZKB0sn9sWmHfYf931YJ78g4-or1O9RGOXuoM3S5_3Cwu5lfXPy8X51dzLXiZ5lypqqzrUlMtW9a1BVGS09yIQppCUAqgeFsZ1hkKnLUgi6qQFWFlKUUnaz5DXzd7x-AfJ4ipGWzU0PfKgZ9iwwSvKKt5VWb65T_64Kfg8u-yEqxmNWUkq9ON0sHHGKBrxmAHFVYNJc2_LJrvZPFrncUy408vK6c2n2dLX4-fwecNCFFvp29hNqPpsjl5z_Bnex6apA</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Berenbeim, Jacob A</creator><creator>Wong, Natalie G. K</creator><creator>Cockett, Martin C. R</creator><creator>Berden, Giel</creator><creator>Oomens, Jos</creator><creator>Rijs, Anouk M</creator><creator>Dessent, Caroline E. H</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1500-922X</orcidid><orcidid>https://orcid.org/0000-0002-0730-7852</orcidid><orcidid>https://orcid.org/0000-0002-2717-1278</orcidid><orcidid>https://orcid.org/0000-0003-4944-0413</orcidid><orcidid>https://orcid.org/0000-0002-3154-038X</orcidid><orcidid>https://orcid.org/0000-0002-7446-9907</orcidid></search><sort><creationdate>20200916</creationdate><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><author>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metals</topic><topic>Benzophenones - chemistry</topic><topic>Benzophenones - radiation effects</topic><topic>Binding</topic><topic>Cations</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - radiation effects</topic><topic>Decay</topic><topic>Density Functional Theory</topic><topic>Electronic spectra</topic><topic>Excitation</topic><topic>Free electron lasers</topic><topic>Functional groups</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen-based energy</topic><topic>Infrared lasers</topic><topic>Infrared Rays</topic><topic>Infrared spectroscopy</topic><topic>Isomerism</topic><topic>Metal ions</topic><topic>Models, Chemical</topic><topic>Molecular structure</topic><topic>Photodissociation</topic><topic>Potassium - chemistry</topic><topic>Rubidium</topic><topic>Rubidium - chemistry</topic><topic>Sodium</topic><topic>Sodium - chemistry</topic><topic>Spectrophotometry, Infrared</topic><topic>Spectrum analysis</topic><topic>Sun screens</topic><topic>Sunscreen</topic><topic>Sunscreening Agents - chemistry</topic><topic>Sunscreening Agents - radiation effects</topic><topic>Ultraviolet lasers</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenbeim, Jacob A</creatorcontrib><creatorcontrib>Wong, Natalie G. K</creatorcontrib><creatorcontrib>Cockett, Martin C. R</creatorcontrib><creatorcontrib>Berden, Giel</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>Rijs, Anouk M</creatorcontrib><creatorcontrib>Dessent, Caroline E. H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenbeim, Jacob A</au><au>Wong, Natalie G. K</au><au>Cockett, Martin C. R</au><au>Berden, Giel</au><au>Oomens, Jos</au><au>Rijs, Anouk M</au><au>Dessent, Caroline E. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>22</volume><issue>35</issue><spage>19522</spage><epage>19531</epage><pages>19522-19531</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm
−1
), on complexes of Na
+
, K
+
and Rb
+
bound to oxybenzone. The IR spectra reveal that K
+
and Rb
+
adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na
+
cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na
+
complex displaying a distinctive electronic spectrum compared to those of K
+
and Rb
+
, in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed.
Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32840272</pmid><doi>10.1039/d0cp03152f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1500-922X</orcidid><orcidid>https://orcid.org/0000-0002-0730-7852</orcidid><orcidid>https://orcid.org/0000-0002-2717-1278</orcidid><orcidid>https://orcid.org/0000-0003-4944-0413</orcidid><orcidid>https://orcid.org/0000-0002-3154-038X</orcidid><orcidid>https://orcid.org/0000-0002-7446-9907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-09, Vol.22 (35), p.19522-19531 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_32840272 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Alkali metals Benzophenones - chemistry Benzophenones - radiation effects Binding Cations Coordination Complexes - chemistry Coordination Complexes - radiation effects Decay Density Functional Theory Electronic spectra Excitation Free electron lasers Functional groups Hydrogen Bonding Hydrogen bonds Hydrogen-based energy Infrared lasers Infrared Rays Infrared spectroscopy Isomerism Metal ions Models, Chemical Molecular structure Photodissociation Potassium - chemistry Rubidium Rubidium - chemistry Sodium Sodium - chemistry Spectrophotometry, Infrared Spectrum analysis Sun screens Sunscreen Sunscreening Agents - chemistry Sunscreening Agents - radiation effects Ultraviolet lasers Ultraviolet Rays |
title | Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20cationization%20can%20disrupt%20the%20intramolecular%20hydrogen%20bond%20that%20mediates%20the%20sunscreen%20activity%20of%20oxybenzone&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Berenbeim,%20Jacob%20A&rft.date=2020-09-16&rft.volume=22&rft.issue=35&rft.spage=19522&rft.epage=19531&rft.pages=19522-19531&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp03152f&rft_dat=%3Cproquest_pubme%3E2437128376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442828120&rft_id=info:pmid/32840272&rfr_iscdi=true |