Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone

A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and henc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-09, Vol.22 (35), p.19522-19531
Hauptverfasser: Berenbeim, Jacob A, Wong, Natalie G. K, Cockett, Martin C. R, Berden, Giel, Oomens, Jos, Rijs, Anouk M, Dessent, Caroline E. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19531
container_issue 35
container_start_page 19522
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Berenbeim, Jacob A
Wong, Natalie G. K
Cockett, Martin C. R
Berden, Giel
Oomens, Jos
Rijs, Anouk M
Dessent, Caroline E. H
description A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm −1 ), on complexes of Na + , K + and Rb + bound to oxybenzone. The IR spectra reveal that K + and Rb + adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na + cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na + complex displaying a distinctive electronic spectrum compared to those of K + and Rb + , in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed. Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.
doi_str_mv 10.1039/d0cp03152f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32840272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437128376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_AgitqtF--WlF6KsDW_5keOsu1WQbBQPQ-Z5I1GZpIxyZSuf73prq7Qg6eXx_vwCO-L0DEl3yjh8swQPRJOC9btoEMqSj6XpBa723dVHqAPMT4QQmhB-T464KwWhFXsEKXf3thpwFol6519WpfcOWxsDNOYcLoHbF0KavA96KlXAd-vTPB34HDrnclAJTyAsSpBXPM4uagDZKB0sn9sWmHfYf931YJ78g4-or1O9RGOXuoM3S5_3Cwu5lfXPy8X51dzLXiZ5lypqqzrUlMtW9a1BVGS09yIQppCUAqgeFsZ1hkKnLUgi6qQFWFlKUUnaz5DXzd7x-AfJ4ipGWzU0PfKgZ9iwwSvKKt5VWb65T_64Kfg8u-yEqxmNWUkq9ON0sHHGKBrxmAHFVYNJc2_LJrvZPFrncUy408vK6c2n2dLX4-fwecNCFFvp29hNqPpsjl5z_Bnex6apA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442828120</pqid></control><display><type>article</type><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</creator><creatorcontrib>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</creatorcontrib><description>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm −1 ), on complexes of Na + , K + and Rb + bound to oxybenzone. The IR spectra reveal that K + and Rb + adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na + cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na + complex displaying a distinctive electronic spectrum compared to those of K + and Rb + , in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed. Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp03152f</identifier><identifier>PMID: 32840272</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkali metals ; Benzophenones - chemistry ; Benzophenones - radiation effects ; Binding ; Cations ; Coordination Complexes - chemistry ; Coordination Complexes - radiation effects ; Decay ; Density Functional Theory ; Electronic spectra ; Excitation ; Free electron lasers ; Functional groups ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen-based energy ; Infrared lasers ; Infrared Rays ; Infrared spectroscopy ; Isomerism ; Metal ions ; Models, Chemical ; Molecular structure ; Photodissociation ; Potassium - chemistry ; Rubidium ; Rubidium - chemistry ; Sodium ; Sodium - chemistry ; Spectrophotometry, Infrared ; Spectrum analysis ; Sun screens ; Sunscreen ; Sunscreening Agents - chemistry ; Sunscreening Agents - radiation effects ; Ultraviolet lasers ; Ultraviolet Rays</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-09, Vol.22 (35), p.19522-19531</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</citedby><cites>FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</cites><orcidid>0000-0003-1500-922X ; 0000-0002-0730-7852 ; 0000-0002-2717-1278 ; 0000-0003-4944-0413 ; 0000-0002-3154-038X ; 0000-0002-7446-9907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32840272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berenbeim, Jacob A</creatorcontrib><creatorcontrib>Wong, Natalie G. K</creatorcontrib><creatorcontrib>Cockett, Martin C. R</creatorcontrib><creatorcontrib>Berden, Giel</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>Rijs, Anouk M</creatorcontrib><creatorcontrib>Dessent, Caroline E. H</creatorcontrib><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm −1 ), on complexes of Na + , K + and Rb + bound to oxybenzone. The IR spectra reveal that K + and Rb + adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na + cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na + complex displaying a distinctive electronic spectrum compared to those of K + and Rb + , in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed. Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</description><subject>Alkali metals</subject><subject>Benzophenones - chemistry</subject><subject>Benzophenones - radiation effects</subject><subject>Binding</subject><subject>Cations</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - radiation effects</subject><subject>Decay</subject><subject>Density Functional Theory</subject><subject>Electronic spectra</subject><subject>Excitation</subject><subject>Free electron lasers</subject><subject>Functional groups</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen-based energy</subject><subject>Infrared lasers</subject><subject>Infrared Rays</subject><subject>Infrared spectroscopy</subject><subject>Isomerism</subject><subject>Metal ions</subject><subject>Models, Chemical</subject><subject>Molecular structure</subject><subject>Photodissociation</subject><subject>Potassium - chemistry</subject><subject>Rubidium</subject><subject>Rubidium - chemistry</subject><subject>Sodium</subject><subject>Sodium - chemistry</subject><subject>Spectrophotometry, Infrared</subject><subject>Spectrum analysis</subject><subject>Sun screens</subject><subject>Sunscreen</subject><subject>Sunscreening Agents - chemistry</subject><subject>Sunscreening Agents - radiation effects</subject><subject>Ultraviolet lasers</subject><subject>Ultraviolet Rays</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9LHDEUB_AgitqtF--WlF6KsDW_5keOsu1WQbBQPQ-Z5I1GZpIxyZSuf73prq7Qg6eXx_vwCO-L0DEl3yjh8swQPRJOC9btoEMqSj6XpBa723dVHqAPMT4QQmhB-T464KwWhFXsEKXf3thpwFol6519WpfcOWxsDNOYcLoHbF0KavA96KlXAd-vTPB34HDrnclAJTyAsSpBXPM4uagDZKB0sn9sWmHfYf931YJ78g4-or1O9RGOXuoM3S5_3Cwu5lfXPy8X51dzLXiZ5lypqqzrUlMtW9a1BVGS09yIQppCUAqgeFsZ1hkKnLUgi6qQFWFlKUUnaz5DXzd7x-AfJ4ipGWzU0PfKgZ9iwwSvKKt5VWb65T_64Kfg8u-yEqxmNWUkq9ON0sHHGKBrxmAHFVYNJc2_LJrvZPFrncUy408vK6c2n2dLX4-fwecNCFFvp29hNqPpsjl5z_Bnex6apA</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Berenbeim, Jacob A</creator><creator>Wong, Natalie G. K</creator><creator>Cockett, Martin C. R</creator><creator>Berden, Giel</creator><creator>Oomens, Jos</creator><creator>Rijs, Anouk M</creator><creator>Dessent, Caroline E. H</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1500-922X</orcidid><orcidid>https://orcid.org/0000-0002-0730-7852</orcidid><orcidid>https://orcid.org/0000-0002-2717-1278</orcidid><orcidid>https://orcid.org/0000-0003-4944-0413</orcidid><orcidid>https://orcid.org/0000-0002-3154-038X</orcidid><orcidid>https://orcid.org/0000-0002-7446-9907</orcidid></search><sort><creationdate>20200916</creationdate><title>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</title><author>Berenbeim, Jacob A ; Wong, Natalie G. K ; Cockett, Martin C. R ; Berden, Giel ; Oomens, Jos ; Rijs, Anouk M ; Dessent, Caroline E. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-3aa76886c1c9b2fb50a9311c9459d5411eea3b7d2fd1e32be957597026694f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metals</topic><topic>Benzophenones - chemistry</topic><topic>Benzophenones - radiation effects</topic><topic>Binding</topic><topic>Cations</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - radiation effects</topic><topic>Decay</topic><topic>Density Functional Theory</topic><topic>Electronic spectra</topic><topic>Excitation</topic><topic>Free electron lasers</topic><topic>Functional groups</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen-based energy</topic><topic>Infrared lasers</topic><topic>Infrared Rays</topic><topic>Infrared spectroscopy</topic><topic>Isomerism</topic><topic>Metal ions</topic><topic>Models, Chemical</topic><topic>Molecular structure</topic><topic>Photodissociation</topic><topic>Potassium - chemistry</topic><topic>Rubidium</topic><topic>Rubidium - chemistry</topic><topic>Sodium</topic><topic>Sodium - chemistry</topic><topic>Spectrophotometry, Infrared</topic><topic>Spectrum analysis</topic><topic>Sun screens</topic><topic>Sunscreen</topic><topic>Sunscreening Agents - chemistry</topic><topic>Sunscreening Agents - radiation effects</topic><topic>Ultraviolet lasers</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenbeim, Jacob A</creatorcontrib><creatorcontrib>Wong, Natalie G. K</creatorcontrib><creatorcontrib>Cockett, Martin C. R</creatorcontrib><creatorcontrib>Berden, Giel</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>Rijs, Anouk M</creatorcontrib><creatorcontrib>Dessent, Caroline E. H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenbeim, Jacob A</au><au>Wong, Natalie G. K</au><au>Cockett, Martin C. R</au><au>Berden, Giel</au><au>Oomens, Jos</au><au>Rijs, Anouk M</au><au>Dessent, Caroline E. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>22</volume><issue>35</issue><spage>19522</spage><epage>19531</epage><pages>19522-19531</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm −1 ), on complexes of Na + , K + and Rb + bound to oxybenzone. The IR spectra reveal that K + and Rb + adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na + cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na + complex displaying a distinctive electronic spectrum compared to those of K + and Rb + , in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed. Complexation with a sodium cation breaks the intramolecular hydrogen bond of oxybenzone, compromising its ability to act as an effective UV filter.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32840272</pmid><doi>10.1039/d0cp03152f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1500-922X</orcidid><orcidid>https://orcid.org/0000-0002-0730-7852</orcidid><orcidid>https://orcid.org/0000-0002-2717-1278</orcidid><orcidid>https://orcid.org/0000-0003-4944-0413</orcidid><orcidid>https://orcid.org/0000-0002-3154-038X</orcidid><orcidid>https://orcid.org/0000-0002-7446-9907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-09, Vol.22 (35), p.19522-19531
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_32840272
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Alkali metals
Benzophenones - chemistry
Benzophenones - radiation effects
Binding
Cations
Coordination Complexes - chemistry
Coordination Complexes - radiation effects
Decay
Density Functional Theory
Electronic spectra
Excitation
Free electron lasers
Functional groups
Hydrogen Bonding
Hydrogen bonds
Hydrogen-based energy
Infrared lasers
Infrared Rays
Infrared spectroscopy
Isomerism
Metal ions
Models, Chemical
Molecular structure
Photodissociation
Potassium - chemistry
Rubidium
Rubidium - chemistry
Sodium
Sodium - chemistry
Spectrophotometry, Infrared
Spectrum analysis
Sun screens
Sunscreen
Sunscreening Agents - chemistry
Sunscreening Agents - radiation effects
Ultraviolet lasers
Ultraviolet Rays
title Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20cationization%20can%20disrupt%20the%20intramolecular%20hydrogen%20bond%20that%20mediates%20the%20sunscreen%20activity%20of%20oxybenzone&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Berenbeim,%20Jacob%20A&rft.date=2020-09-16&rft.volume=22&rft.issue=35&rft.spage=19522&rft.epage=19531&rft.pages=19522-19531&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp03152f&rft_dat=%3Cproquest_pubme%3E2437128376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442828120&rft_id=info:pmid/32840272&rfr_iscdi=true