Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease

We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antiviral research 2020-10, Vol.182, p.104908-104908, Article 104908
Hauptverfasser: Lane, Thomas R., Dyall, Julie, Mercer, Luke, Goodin, Caleb, Foil, Daniel H., Zhou, Huanying, Postnikova, Elena, Liang, Janie Y., Holbrook, Michael R., Madrid, Peter B., Ekins, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104908
container_issue
container_start_page 104908
container_title Antiviral research
container_volume 182
creator Lane, Thomas R.
Dyall, Julie
Mercer, Luke
Goodin, Caleb
Foil, Daniel H.
Zhou, Huanying
Postnikova, Elena
Liang, Janie Y.
Holbrook, Michael R.
Madrid, Peter B.
Ekins, Sean
description We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease. •We describe a machine learning model to predict lysosomotropic activity.•We demonstrate that pyronaridine, quinacrine and tilorone all inhibit lysotracker accumulation as predicted.•Artesunate does not appear to inhibit lysostracker accumulation as predicted.•We demonstrate additivity between pyronaridine and artesunate for their in vitro EBOV activity.•These findings suggest pyronaridine and artesunate may be combined and repurposed against EBOV.
doi_str_mv 10.1016/j.antiviral.2020.104908
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32798602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166354220303223</els_id><sourcerecordid>2434757691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-d174d373b0fead2e43ee30f1a964813d382ac49f1d4b8936187b73678a8218393</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERYfCK0CWSJDBf2M7G6RqVKBSpSJU1pYT3xSPEntqOwN9KR6CJ8NDpiNYwer65zvX5_og9JLgJcFEvN0sjc9u56IZlhTT_SlvsHqEFkRJWje4EY_RopCiZitOT9HTlDYYYyEb9QSdMlqqwHSBbj7DdorbkJy_rT7dRzOa7z9_vKnuJudNF52HynhbZTeEGPabVOUIJo_gc6r6EKuLNgymKlamVFmXwCR4hk56MyR4fqhn6Mv7i5v1x_rq-sPl-vyq7rhc5doSyS2TrMU9GEuBMwCGe2IawRVhlilqOt70xPJWNUyU0VrJhFRGUaJYw87Qu7nvdmpHsF3xVD5Eb6MbTbzXwTj99413X_Vt2GnJ6UooXBq8OjSI4W6ClPXoUgfDYDyEKWnKWXEqRUMKKme0iyGlCP3xGYL1PhO90cdM9D4TPWdSlC_-dHnUPYRQgNcz8A3a0KfOge_giJXUigMsOSur37T6f3rtssku-HWYfC7S81kKJZSdg6gPcusidFnb4P45zS_x8cS3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434757691</pqid></control><display><type>article</type><title>Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lane, Thomas R. ; Dyall, Julie ; Mercer, Luke ; Goodin, Caleb ; Foil, Daniel H. ; Zhou, Huanying ; Postnikova, Elena ; Liang, Janie Y. ; Holbrook, Michael R. ; Madrid, Peter B. ; Ekins, Sean</creator><creatorcontrib>Lane, Thomas R. ; Dyall, Julie ; Mercer, Luke ; Goodin, Caleb ; Foil, Daniel H. ; Zhou, Huanying ; Postnikova, Elena ; Liang, Janie Y. ; Holbrook, Michael R. ; Madrid, Peter B. ; Ekins, Sean</creatorcontrib><description>We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease. •We describe a machine learning model to predict lysosomotropic activity.•We demonstrate that pyronaridine, quinacrine and tilorone all inhibit lysotracker accumulation as predicted.•Artesunate does not appear to inhibit lysostracker accumulation as predicted.•We demonstrate additivity between pyronaridine and artesunate for their in vitro EBOV activity.•These findings suggest pyronaridine and artesunate may be combined and repurposed against EBOV.</description><identifier>ISSN: 0166-3542</identifier><identifier>EISSN: 1872-9096</identifier><identifier>DOI: 10.1016/j.antiviral.2020.104908</identifier><identifier>PMID: 32798602</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Antiviral ; Ebola ; Life Sciences &amp; Biomedicine ; Lysosomotropic ; Machine learning ; Pharmacology &amp; Pharmacy ; Research Paper ; Science &amp; Technology ; Virology</subject><ispartof>Antiviral research, 2020-10, Vol.182, p.104908-104908, Article 104908</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576074300002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c475t-d174d373b0fead2e43ee30f1a964813d382ac49f1d4b8936187b73678a8218393</citedby><cites>FETCH-LOGICAL-c475t-d174d373b0fead2e43ee30f1a964813d382ac49f1d4b8936187b73678a8218393</cites><orcidid>0000-0002-4895-5610 ; 0000-0002-5691-5790 ; 0000-0003-0512-8997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.antiviral.2020.104908$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32798602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Dyall, Julie</creatorcontrib><creatorcontrib>Mercer, Luke</creatorcontrib><creatorcontrib>Goodin, Caleb</creatorcontrib><creatorcontrib>Foil, Daniel H.</creatorcontrib><creatorcontrib>Zhou, Huanying</creatorcontrib><creatorcontrib>Postnikova, Elena</creatorcontrib><creatorcontrib>Liang, Janie Y.</creatorcontrib><creatorcontrib>Holbrook, Michael R.</creatorcontrib><creatorcontrib>Madrid, Peter B.</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><title>Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease</title><title>Antiviral research</title><addtitle>ANTIVIR RES</addtitle><addtitle>Antiviral Res</addtitle><description>We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease. •We describe a machine learning model to predict lysosomotropic activity.•We demonstrate that pyronaridine, quinacrine and tilorone all inhibit lysotracker accumulation as predicted.•Artesunate does not appear to inhibit lysostracker accumulation as predicted.•We demonstrate additivity between pyronaridine and artesunate for their in vitro EBOV activity.•These findings suggest pyronaridine and artesunate may be combined and repurposed against EBOV.</description><subject>Antiviral</subject><subject>Ebola</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lysosomotropic</subject><subject>Machine learning</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Research Paper</subject><subject>Science &amp; Technology</subject><subject>Virology</subject><issn>0166-3542</issn><issn>1872-9096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1u1DAUhS1ERYfCK0CWSJDBf2M7G6RqVKBSpSJU1pYT3xSPEntqOwN9KR6CJ8NDpiNYwer65zvX5_og9JLgJcFEvN0sjc9u56IZlhTT_SlvsHqEFkRJWje4EY_RopCiZitOT9HTlDYYYyEb9QSdMlqqwHSBbj7DdorbkJy_rT7dRzOa7z9_vKnuJudNF52HynhbZTeEGPabVOUIJo_gc6r6EKuLNgymKlamVFmXwCR4hk56MyR4fqhn6Mv7i5v1x_rq-sPl-vyq7rhc5doSyS2TrMU9GEuBMwCGe2IawRVhlilqOt70xPJWNUyU0VrJhFRGUaJYw87Qu7nvdmpHsF3xVD5Eb6MbTbzXwTj99413X_Vt2GnJ6UooXBq8OjSI4W6ClPXoUgfDYDyEKWnKWXEqRUMKKme0iyGlCP3xGYL1PhO90cdM9D4TPWdSlC_-dHnUPYRQgNcz8A3a0KfOge_giJXUigMsOSur37T6f3rtssku-HWYfC7S81kKJZSdg6gPcusidFnb4P45zS_x8cS3</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lane, Thomas R.</creator><creator>Dyall, Julie</creator><creator>Mercer, Luke</creator><creator>Goodin, Caleb</creator><creator>Foil, Daniel H.</creator><creator>Zhou, Huanying</creator><creator>Postnikova, Elena</creator><creator>Liang, Janie Y.</creator><creator>Holbrook, Michael R.</creator><creator>Madrid, Peter B.</creator><creator>Ekins, Sean</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4895-5610</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><orcidid>https://orcid.org/0000-0003-0512-8997</orcidid></search><sort><creationdate>20201001</creationdate><title>Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease</title><author>Lane, Thomas R. ; Dyall, Julie ; Mercer, Luke ; Goodin, Caleb ; Foil, Daniel H. ; Zhou, Huanying ; Postnikova, Elena ; Liang, Janie Y. ; Holbrook, Michael R. ; Madrid, Peter B. ; Ekins, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-d174d373b0fead2e43ee30f1a964813d382ac49f1d4b8936187b73678a8218393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiviral</topic><topic>Ebola</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lysosomotropic</topic><topic>Machine learning</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Research Paper</topic><topic>Science &amp; Technology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Dyall, Julie</creatorcontrib><creatorcontrib>Mercer, Luke</creatorcontrib><creatorcontrib>Goodin, Caleb</creatorcontrib><creatorcontrib>Foil, Daniel H.</creatorcontrib><creatorcontrib>Zhou, Huanying</creatorcontrib><creatorcontrib>Postnikova, Elena</creatorcontrib><creatorcontrib>Liang, Janie Y.</creatorcontrib><creatorcontrib>Holbrook, Michael R.</creatorcontrib><creatorcontrib>Madrid, Peter B.</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antiviral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, Thomas R.</au><au>Dyall, Julie</au><au>Mercer, Luke</au><au>Goodin, Caleb</au><au>Foil, Daniel H.</au><au>Zhou, Huanying</au><au>Postnikova, Elena</au><au>Liang, Janie Y.</au><au>Holbrook, Michael R.</au><au>Madrid, Peter B.</au><au>Ekins, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease</atitle><jtitle>Antiviral research</jtitle><stitle>ANTIVIR RES</stitle><addtitle>Antiviral Res</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>182</volume><spage>104908</spage><epage>104908</epage><pages>104908-104908</pages><artnum>104908</artnum><issn>0166-3542</issn><eissn>1872-9096</eissn><abstract>We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease. •We describe a machine learning model to predict lysosomotropic activity.•We demonstrate that pyronaridine, quinacrine and tilorone all inhibit lysotracker accumulation as predicted.•Artesunate does not appear to inhibit lysostracker accumulation as predicted.•We demonstrate additivity between pyronaridine and artesunate for their in vitro EBOV activity.•These findings suggest pyronaridine and artesunate may be combined and repurposed against EBOV.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>32798602</pmid><doi>10.1016/j.antiviral.2020.104908</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4895-5610</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><orcidid>https://orcid.org/0000-0003-0512-8997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-3542
ispartof Antiviral research, 2020-10, Vol.182, p.104908-104908, Article 104908
issn 0166-3542
1872-9096
language eng
recordid cdi_pubmed_primary_32798602
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Antiviral
Ebola
Life Sciences & Biomedicine
Lysosomotropic
Machine learning
Pharmacology & Pharmacy
Research Paper
Science & Technology
Virology
title Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T20%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repurposing%20Pyramax%C2%AE,%20quinacrine%20and%20tilorone%20as%20treatments%20for%20Ebola%20virus%20disease&rft.jtitle=Antiviral%20research&rft.au=Lane,%20Thomas%20R.&rft.date=2020-10-01&rft.volume=182&rft.spage=104908&rft.epage=104908&rft.pages=104908-104908&rft.artnum=104908&rft.issn=0166-3542&rft.eissn=1872-9096&rft_id=info:doi/10.1016/j.antiviral.2020.104908&rft_dat=%3Cproquest_pubme%3E2434757691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434757691&rft_id=info:pmid/32798602&rft_els_id=S0166354220303223&rfr_iscdi=true