Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity
Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2020-01, Vol.6 (1), p.188-188 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | International journal of bioprinting |
container_volume | 6 |
creator | Cristescu, Rodica Negut, Irina Visan, Anita Ioana Nguyen, Alexander K Sachan, Andrew Goering, Peter L Chrisey, Douglas B Narayan, Roger J |
description | Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition. |
doi_str_mv | 10.18063/ijb.v6i1.188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32782983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667809633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</originalsourceid><addsrcrecordid>eNpdUU1P3DAUtCqqgrYce60iceES8Ec-nAvSCvElgYoQnC3beSneJnFqO6vuv-9bWBDtwZ737PE8j4aQb4yeMEkrcepW5mRdOYat_EQOeMGLXFLK93Z1XXOxTw5jXFE8lYwyIb-QfcFryRspDsivO52C-5MvY3QxQZvdz31E6HWEkF2s9eSDTs6PeQuTj25LedCTHjbWjdnjM26Xrh9idqfdmHBlyzG5KfjedbB9uYZsaRFc2nwlnzuN6oc7XJCny4vH8-v89sfVzfnyNrcFK1NupenatgKQBmoQ1BhtWNUYydrSdtLaGlq0VZSFFNw0RVvKBhpeNoID1p1YkLNX3Wk2A7QWxhR0r6bgBh02ymun_r0Z3bP66deqxvmyoihwvBMI_vcMManBRQt9r0fwc1S8EIKLpsCRC3L0H3Xl5zCiPcWrqpa0qYRAVv7KssHHGKB7_wyj6iVJhUmqbZLYSuR__-jgnf2Wm_gLYhGdjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667809633</pqid></control><display><type>article</type><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</creator><creatorcontrib>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</creatorcontrib><description>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.v6i1.188</identifier><identifier>PMID: 32782983</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Antiproliferatives ; Borosilicate glass ; Cell proliferation ; Coatings ; Dip coatings ; Evaporation ; Fibroblasts ; Glass substrates ; Immersion coating ; Langmuir-Blodgett films ; Medical equipment ; Optical glass ; Original ; Polyvinylpyrrolidone ; Pulsed lasers ; Rapamycin ; Spin coating ; Thin films</subject><ispartof>International journal of bioprinting, 2020-01, Vol.6 (1), p.188-188</ispartof><rights>Copyright: © 2020 Cristescu, et al.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2020 Cristescu, 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415860/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32782983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cristescu, Rodica</creatorcontrib><creatorcontrib>Negut, Irina</creatorcontrib><creatorcontrib>Visan, Anita Ioana</creatorcontrib><creatorcontrib>Nguyen, Alexander K</creatorcontrib><creatorcontrib>Sachan, Andrew</creatorcontrib><creatorcontrib>Goering, Peter L</creatorcontrib><creatorcontrib>Chrisey, Douglas B</creatorcontrib><creatorcontrib>Narayan, Roger J</creatorcontrib><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><title>International journal of bioprinting</title><addtitle>Int J Bioprint</addtitle><description>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</description><subject>Antiproliferatives</subject><subject>Borosilicate glass</subject><subject>Cell proliferation</subject><subject>Coatings</subject><subject>Dip coatings</subject><subject>Evaporation</subject><subject>Fibroblasts</subject><subject>Glass substrates</subject><subject>Immersion coating</subject><subject>Langmuir-Blodgett films</subject><subject>Medical equipment</subject><subject>Optical glass</subject><subject>Original</subject><subject>Polyvinylpyrrolidone</subject><subject>Pulsed lasers</subject><subject>Rapamycin</subject><subject>Spin coating</subject><subject>Thin films</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUU1P3DAUtCqqgrYce60iceES8Ec-nAvSCvElgYoQnC3beSneJnFqO6vuv-9bWBDtwZ737PE8j4aQb4yeMEkrcepW5mRdOYat_EQOeMGLXFLK93Z1XXOxTw5jXFE8lYwyIb-QfcFryRspDsivO52C-5MvY3QxQZvdz31E6HWEkF2s9eSDTs6PeQuTj25LedCTHjbWjdnjM26Xrh9idqfdmHBlyzG5KfjedbB9uYZsaRFc2nwlnzuN6oc7XJCny4vH8-v89sfVzfnyNrcFK1NupenatgKQBmoQ1BhtWNUYydrSdtLaGlq0VZSFFNw0RVvKBhpeNoID1p1YkLNX3Wk2A7QWxhR0r6bgBh02ymun_r0Z3bP66deqxvmyoihwvBMI_vcMManBRQt9r0fwc1S8EIKLpsCRC3L0H3Xl5zCiPcWrqpa0qYRAVv7KssHHGKB7_wyj6iVJhUmqbZLYSuR__-jgnf2Wm_gLYhGdjQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cristescu, Rodica</creator><creator>Negut, Irina</creator><creator>Visan, Anita Ioana</creator><creator>Nguyen, Alexander K</creator><creator>Sachan, Andrew</creator><creator>Goering, Peter L</creator><creator>Chrisey, Douglas B</creator><creator>Narayan, Roger J</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><author>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiproliferatives</topic><topic>Borosilicate glass</topic><topic>Cell proliferation</topic><topic>Coatings</topic><topic>Dip coatings</topic><topic>Evaporation</topic><topic>Fibroblasts</topic><topic>Glass substrates</topic><topic>Immersion coating</topic><topic>Langmuir-Blodgett films</topic><topic>Medical equipment</topic><topic>Optical glass</topic><topic>Original</topic><topic>Polyvinylpyrrolidone</topic><topic>Pulsed lasers</topic><topic>Rapamycin</topic><topic>Spin coating</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Cristescu, Rodica</creatorcontrib><creatorcontrib>Negut, Irina</creatorcontrib><creatorcontrib>Visan, Anita Ioana</creatorcontrib><creatorcontrib>Nguyen, Alexander K</creatorcontrib><creatorcontrib>Sachan, Andrew</creatorcontrib><creatorcontrib>Goering, Peter L</creatorcontrib><creatorcontrib>Chrisey, Douglas B</creatorcontrib><creatorcontrib>Narayan, Roger J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cristescu, Rodica</au><au>Negut, Irina</au><au>Visan, Anita Ioana</au><au>Nguyen, Alexander K</au><au>Sachan, Andrew</au><au>Goering, Peter L</au><au>Chrisey, Douglas B</au><au>Narayan, Roger J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</atitle><jtitle>International journal of bioprinting</jtitle><addtitle>Int J Bioprint</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>188</spage><epage>188</epage><pages>188-188</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>32782983</pmid><doi>10.18063/ijb.v6i1.188</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2424-7723 |
ispartof | International journal of bioprinting, 2020-01, Vol.6 (1), p.188-188 |
issn | 2424-7723 2424-8002 |
language | eng |
recordid | cdi_pubmed_primary_32782983 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antiproliferatives Borosilicate glass Cell proliferation Coatings Dip coatings Evaporation Fibroblasts Glass substrates Immersion coating Langmuir-Blodgett films Medical equipment Optical glass Original Polyvinylpyrrolidone Pulsed lasers Rapamycin Spin coating Thin films |
title | Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-Assisted%20Pulsed%20laser%20Evaporation-deposited%20Rapamycin%20Thin%20Films%20Maintain%20Antiproliferative%20Activity&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Cristescu,%20Rodica&rft.date=2020-01-01&rft.volume=6&rft.issue=1&rft.spage=188&rft.epage=188&rft.pages=188-188&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.v6i1.188&rft_dat=%3Cproquest_pubme%3E2667809633%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667809633&rft_id=info:pmid/32782983&rfr_iscdi=true |