Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity

Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bioprinting 2020-01, Vol.6 (1), p.188-188
Hauptverfasser: Cristescu, Rodica, Negut, Irina, Visan, Anita Ioana, Nguyen, Alexander K, Sachan, Andrew, Goering, Peter L, Chrisey, Douglas B, Narayan, Roger J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1
container_start_page 188
container_title International journal of bioprinting
container_volume 6
creator Cristescu, Rodica
Negut, Irina
Visan, Anita Ioana
Nguyen, Alexander K
Sachan, Andrew
Goering, Peter L
Chrisey, Douglas B
Narayan, Roger J
description Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.
doi_str_mv 10.18063/ijb.v6i1.188
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32782983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667809633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</originalsourceid><addsrcrecordid>eNpdUU1P3DAUtCqqgrYce60iceES8Ec-nAvSCvElgYoQnC3beSneJnFqO6vuv-9bWBDtwZ737PE8j4aQb4yeMEkrcepW5mRdOYat_EQOeMGLXFLK93Z1XXOxTw5jXFE8lYwyIb-QfcFryRspDsivO52C-5MvY3QxQZvdz31E6HWEkF2s9eSDTs6PeQuTj25LedCTHjbWjdnjM26Xrh9idqfdmHBlyzG5KfjedbB9uYZsaRFc2nwlnzuN6oc7XJCny4vH8-v89sfVzfnyNrcFK1NupenatgKQBmoQ1BhtWNUYydrSdtLaGlq0VZSFFNw0RVvKBhpeNoID1p1YkLNX3Wk2A7QWxhR0r6bgBh02ymun_r0Z3bP66deqxvmyoihwvBMI_vcMManBRQt9r0fwc1S8EIKLpsCRC3L0H3Xl5zCiPcWrqpa0qYRAVv7KssHHGKB7_wyj6iVJhUmqbZLYSuR__-jgnf2Wm_gLYhGdjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667809633</pqid></control><display><type>article</type><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</creator><creatorcontrib>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</creatorcontrib><description>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.v6i1.188</identifier><identifier>PMID: 32782983</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Antiproliferatives ; Borosilicate glass ; Cell proliferation ; Coatings ; Dip coatings ; Evaporation ; Fibroblasts ; Glass substrates ; Immersion coating ; Langmuir-Blodgett films ; Medical equipment ; Optical glass ; Original ; Polyvinylpyrrolidone ; Pulsed lasers ; Rapamycin ; Spin coating ; Thin films</subject><ispartof>International journal of bioprinting, 2020-01, Vol.6 (1), p.188-188</ispartof><rights>Copyright: © 2020 Cristescu, et al.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2020 Cristescu, 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415860/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32782983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cristescu, Rodica</creatorcontrib><creatorcontrib>Negut, Irina</creatorcontrib><creatorcontrib>Visan, Anita Ioana</creatorcontrib><creatorcontrib>Nguyen, Alexander K</creatorcontrib><creatorcontrib>Sachan, Andrew</creatorcontrib><creatorcontrib>Goering, Peter L</creatorcontrib><creatorcontrib>Chrisey, Douglas B</creatorcontrib><creatorcontrib>Narayan, Roger J</creatorcontrib><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><title>International journal of bioprinting</title><addtitle>Int J Bioprint</addtitle><description>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</description><subject>Antiproliferatives</subject><subject>Borosilicate glass</subject><subject>Cell proliferation</subject><subject>Coatings</subject><subject>Dip coatings</subject><subject>Evaporation</subject><subject>Fibroblasts</subject><subject>Glass substrates</subject><subject>Immersion coating</subject><subject>Langmuir-Blodgett films</subject><subject>Medical equipment</subject><subject>Optical glass</subject><subject>Original</subject><subject>Polyvinylpyrrolidone</subject><subject>Pulsed lasers</subject><subject>Rapamycin</subject><subject>Spin coating</subject><subject>Thin films</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUU1P3DAUtCqqgrYce60iceES8Ec-nAvSCvElgYoQnC3beSneJnFqO6vuv-9bWBDtwZ737PE8j4aQb4yeMEkrcepW5mRdOYat_EQOeMGLXFLK93Z1XXOxTw5jXFE8lYwyIb-QfcFryRspDsivO52C-5MvY3QxQZvdz31E6HWEkF2s9eSDTs6PeQuTj25LedCTHjbWjdnjM26Xrh9idqfdmHBlyzG5KfjedbB9uYZsaRFc2nwlnzuN6oc7XJCny4vH8-v89sfVzfnyNrcFK1NupenatgKQBmoQ1BhtWNUYydrSdtLaGlq0VZSFFNw0RVvKBhpeNoID1p1YkLNX3Wk2A7QWxhR0r6bgBh02ymun_r0Z3bP66deqxvmyoihwvBMI_vcMManBRQt9r0fwc1S8EIKLpsCRC3L0H3Xl5zCiPcWrqpa0qYRAVv7KssHHGKB7_wyj6iVJhUmqbZLYSuR__-jgnf2Wm_gLYhGdjQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cristescu, Rodica</creator><creator>Negut, Irina</creator><creator>Visan, Anita Ioana</creator><creator>Nguyen, Alexander K</creator><creator>Sachan, Andrew</creator><creator>Goering, Peter L</creator><creator>Chrisey, Douglas B</creator><creator>Narayan, Roger J</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</title><author>Cristescu, Rodica ; Negut, Irina ; Visan, Anita Ioana ; Nguyen, Alexander K ; Sachan, Andrew ; Goering, Peter L ; Chrisey, Douglas B ; Narayan, Roger J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c8bfdd6ee8be7e30bbab169b81d5cf8cc7ed723454832b94d589e925932ed58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiproliferatives</topic><topic>Borosilicate glass</topic><topic>Cell proliferation</topic><topic>Coatings</topic><topic>Dip coatings</topic><topic>Evaporation</topic><topic>Fibroblasts</topic><topic>Glass substrates</topic><topic>Immersion coating</topic><topic>Langmuir-Blodgett films</topic><topic>Medical equipment</topic><topic>Optical glass</topic><topic>Original</topic><topic>Polyvinylpyrrolidone</topic><topic>Pulsed lasers</topic><topic>Rapamycin</topic><topic>Spin coating</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Cristescu, Rodica</creatorcontrib><creatorcontrib>Negut, Irina</creatorcontrib><creatorcontrib>Visan, Anita Ioana</creatorcontrib><creatorcontrib>Nguyen, Alexander K</creatorcontrib><creatorcontrib>Sachan, Andrew</creatorcontrib><creatorcontrib>Goering, Peter L</creatorcontrib><creatorcontrib>Chrisey, Douglas B</creatorcontrib><creatorcontrib>Narayan, Roger J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cristescu, Rodica</au><au>Negut, Irina</au><au>Visan, Anita Ioana</au><au>Nguyen, Alexander K</au><au>Sachan, Andrew</au><au>Goering, Peter L</au><au>Chrisey, Douglas B</au><au>Narayan, Roger J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity</atitle><jtitle>International journal of bioprinting</jtitle><addtitle>Int J Bioprint</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>188</spage><epage>188</epage><pages>188-188</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>32782983</pmid><doi>10.18063/ijb.v6i1.188</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2424-7723
ispartof International journal of bioprinting, 2020-01, Vol.6 (1), p.188-188
issn 2424-7723
2424-8002
language eng
recordid cdi_pubmed_primary_32782983
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antiproliferatives
Borosilicate glass
Cell proliferation
Coatings
Dip coatings
Evaporation
Fibroblasts
Glass substrates
Immersion coating
Langmuir-Blodgett films
Medical equipment
Optical glass
Original
Polyvinylpyrrolidone
Pulsed lasers
Rapamycin
Spin coating
Thin films
title Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-Assisted%20Pulsed%20laser%20Evaporation-deposited%20Rapamycin%20Thin%20Films%20Maintain%20Antiproliferative%20Activity&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Cristescu,%20Rodica&rft.date=2020-01-01&rft.volume=6&rft.issue=1&rft.spage=188&rft.epage=188&rft.pages=188-188&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.v6i1.188&rft_dat=%3Cproquest_pubme%3E2667809633%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667809633&rft_id=info:pmid/32782983&rfr_iscdi=true