Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface

Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2020-08, Vol.5 (30), p.18849-18861
Hauptverfasser: Arranz-Mascarós, Paloma, Godino-Salido, Maria Luz, López-Garzón, Rafael, García-Gallarín, Celeste, Chamorro-Mena, Ignacio, López-Garzón, F. Javier, Fernández-García, Esperanza, Gutiérrez-Valero, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18861
container_issue 30
container_start_page 18849
container_title ACS omega
container_volume 5
creator Arranz-Mascarós, Paloma
Godino-Salido, Maria Luz
López-Garzón, Rafael
García-Gallarín, Celeste
Chamorro-Mena, Ignacio
López-Garzón, F. Javier
Fernández-García, Esperanza
Gutiérrez-Valero, María Dolores
description Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π–π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS–Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS–Cu­(II) type. G-HIS−Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO– functions of HIS. In an analogous hybrid, G-HIS–Au(0), the Au(0) NPs are also stabilized by COO– functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 μmol·g–1·h–1of hydrogen.
doi_str_mv 10.1021/acsomega.0c02006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32775887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_046e681700e24667ba254b5db86bf642</doaj_id><sourcerecordid>2432859679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-9ed294d96ed162c587f218e9930db7a1abbe394dcce0932a50bb1dbccb1a95fd3</originalsourceid><addsrcrecordid>eNqNUsFuEzEUXCEQrULvnJCPSJBie3e99gUJIhoilXJoOVvP3rfpRht7sb1F8PU4TRq1ByRO78meGY88UxSvGT1nlLMPYKPf4hrOqaWcUvGsOOVVQ-esrMrnj_aT4izGDaWUCcklFy-Lk5I3TS1lc1qMV97Nrb-DAV0iF5OzqfcOhv4P7BbiO7IMMN6iQ5I8uZnyXKVIPoNryRJGspvXCUyfKUi-YYKBXIHzI4TU2wEjySo7xvUUOrD4qnjRwRDx7DBnxY-LLzeLr_PL78vV4tPlHCql0lxhy1XVKoEtE9zWsuk4k6hUSVvTAANjsMwAa5GqkkNNjWGtsdYwUHXXlrNitddtPWz0GPothN_aQ6_vD3xY64NDTSuBQrKGUuSVEI0BXlembo0UphMVz1of91rjZLbY2vxVAYYnok9vXH-r1_5ONxWVnNEs8PYgEPzPCWPS2z5aHAZw6KeoeVVyWSvRqAyle6gNPsaA3fEZRvUud_2Quz7knilvHts7Eh5SzoB3e8AvNL6Ltkdn8QjLzajz_9ZZi9Lcl1kh_x-96NN9URZ-cilT3--p2aPe-CnkJsV_G_8LC2Xb5A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432859679</pqid></control><display><type>article</type><title>Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Arranz-Mascarós, Paloma ; Godino-Salido, Maria Luz ; López-Garzón, Rafael ; García-Gallarín, Celeste ; Chamorro-Mena, Ignacio ; López-Garzón, F. Javier ; Fernández-García, Esperanza ; Gutiérrez-Valero, María Dolores</creator><creatorcontrib>Arranz-Mascarós, Paloma ; Godino-Salido, Maria Luz ; López-Garzón, Rafael ; García-Gallarín, Celeste ; Chamorro-Mena, Ignacio ; López-Garzón, F. Javier ; Fernández-García, Esperanza ; Gutiérrez-Valero, María Dolores</creatorcontrib><description>Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π–π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS–Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS–Cu­(II) type. G-HIS−Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO– functions of HIS. In an analogous hybrid, G-HIS–Au(0), the Au(0) NPs are also stabilized by COO– functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 μmol·g–1·h–1of hydrogen.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.0c02006</identifier><identifier>PMID: 32775887</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Physical Sciences ; Science &amp; Technology</subject><ispartof>ACS omega, 2020-08, Vol.5 (30), p.18849-18861</ispartof><rights>Copyright © 2020 American Chemical Society.</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000558752000034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a499t-9ed294d96ed162c587f218e9930db7a1abbe394dcce0932a50bb1dbccb1a95fd3</citedby><cites>FETCH-LOGICAL-a499t-9ed294d96ed162c587f218e9930db7a1abbe394dcce0932a50bb1dbccb1a95fd3</cites><orcidid>0000-0003-4481-4578 ; 0000-0002-3693-5997 ; 0000-0003-3257-4431 ; 0000-0001-8455-9837 ; 0000-0002-4084-7420 ; 0000-0001-9785-3349 ; 0000-0002-7460-0143 ; 0000-0001-7176-1913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.0c02006$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.0c02006$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27087,27931,27932,28255,53798,53800,56769,56819</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32775887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arranz-Mascarós, Paloma</creatorcontrib><creatorcontrib>Godino-Salido, Maria Luz</creatorcontrib><creatorcontrib>López-Garzón, Rafael</creatorcontrib><creatorcontrib>García-Gallarín, Celeste</creatorcontrib><creatorcontrib>Chamorro-Mena, Ignacio</creatorcontrib><creatorcontrib>López-Garzón, F. Javier</creatorcontrib><creatorcontrib>Fernández-García, Esperanza</creatorcontrib><creatorcontrib>Gutiérrez-Valero, María Dolores</creatorcontrib><title>Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface</title><title>ACS omega</title><addtitle>ACS OMEGA</addtitle><addtitle>ACS Omega</addtitle><description>Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π–π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS–Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS–Cu­(II) type. G-HIS−Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO– functions of HIS. In an analogous hybrid, G-HIS–Au(0), the Au(0) NPs are also stabilized by COO– functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 μmol·g–1·h–1of hydrogen.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUsFuEzEUXCEQrULvnJCPSJBie3e99gUJIhoilXJoOVvP3rfpRht7sb1F8PU4TRq1ByRO78meGY88UxSvGT1nlLMPYKPf4hrOqaWcUvGsOOVVQ-esrMrnj_aT4izGDaWUCcklFy-Lk5I3TS1lc1qMV97Nrb-DAV0iF5OzqfcOhv4P7BbiO7IMMN6iQ5I8uZnyXKVIPoNryRJGspvXCUyfKUi-YYKBXIHzI4TU2wEjySo7xvUUOrD4qnjRwRDx7DBnxY-LLzeLr_PL78vV4tPlHCql0lxhy1XVKoEtE9zWsuk4k6hUSVvTAANjsMwAa5GqkkNNjWGtsdYwUHXXlrNitddtPWz0GPothN_aQ6_vD3xY64NDTSuBQrKGUuSVEI0BXlembo0UphMVz1of91rjZLbY2vxVAYYnok9vXH-r1_5ONxWVnNEs8PYgEPzPCWPS2z5aHAZw6KeoeVVyWSvRqAyle6gNPsaA3fEZRvUud_2Quz7knilvHts7Eh5SzoB3e8AvNL6Ltkdn8QjLzajz_9ZZi9Lcl1kh_x-96NN9URZ-cilT3--p2aPe-CnkJsV_G_8LC2Xb5A</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Arranz-Mascarós, Paloma</creator><creator>Godino-Salido, Maria Luz</creator><creator>López-Garzón, Rafael</creator><creator>García-Gallarín, Celeste</creator><creator>Chamorro-Mena, Ignacio</creator><creator>López-Garzón, F. Javier</creator><creator>Fernández-García, Esperanza</creator><creator>Gutiérrez-Valero, María Dolores</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>N~.</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4481-4578</orcidid><orcidid>https://orcid.org/0000-0002-3693-5997</orcidid><orcidid>https://orcid.org/0000-0003-3257-4431</orcidid><orcidid>https://orcid.org/0000-0001-8455-9837</orcidid><orcidid>https://orcid.org/0000-0002-4084-7420</orcidid><orcidid>https://orcid.org/0000-0001-9785-3349</orcidid><orcidid>https://orcid.org/0000-0002-7460-0143</orcidid><orcidid>https://orcid.org/0000-0001-7176-1913</orcidid></search><sort><creationdate>20200804</creationdate><title>Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface</title><author>Arranz-Mascarós, Paloma ; Godino-Salido, Maria Luz ; López-Garzón, Rafael ; García-Gallarín, Celeste ; Chamorro-Mena, Ignacio ; López-Garzón, F. Javier ; Fernández-García, Esperanza ; Gutiérrez-Valero, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-9ed294d96ed162c587f218e9930db7a1abbe394dcce0932a50bb1dbccb1a95fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arranz-Mascarós, Paloma</creatorcontrib><creatorcontrib>Godino-Salido, Maria Luz</creatorcontrib><creatorcontrib>López-Garzón, Rafael</creatorcontrib><creatorcontrib>García-Gallarín, Celeste</creatorcontrib><creatorcontrib>Chamorro-Mena, Ignacio</creatorcontrib><creatorcontrib>López-Garzón, F. Javier</creatorcontrib><creatorcontrib>Fernández-García, Esperanza</creatorcontrib><creatorcontrib>Gutiérrez-Valero, María Dolores</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arranz-Mascarós, Paloma</au><au>Godino-Salido, Maria Luz</au><au>López-Garzón, Rafael</au><au>García-Gallarín, Celeste</au><au>Chamorro-Mena, Ignacio</au><au>López-Garzón, F. Javier</au><au>Fernández-García, Esperanza</au><au>Gutiérrez-Valero, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface</atitle><jtitle>ACS omega</jtitle><stitle>ACS OMEGA</stitle><addtitle>ACS Omega</addtitle><date>2020-08-04</date><risdate>2020</risdate><volume>5</volume><issue>30</issue><spage>18849</spage><epage>18861</epage><pages>18849-18861</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π–π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS–Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS–Cu­(II) type. G-HIS−Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO– functions of HIS. In an analogous hybrid, G-HIS–Au(0), the Au(0) NPs are also stabilized by COO– functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 μmol·g–1·h–1of hydrogen.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32775887</pmid><doi>10.1021/acsomega.0c02006</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4481-4578</orcidid><orcidid>https://orcid.org/0000-0002-3693-5997</orcidid><orcidid>https://orcid.org/0000-0003-3257-4431</orcidid><orcidid>https://orcid.org/0000-0001-8455-9837</orcidid><orcidid>https://orcid.org/0000-0002-4084-7420</orcidid><orcidid>https://orcid.org/0000-0001-9785-3349</orcidid><orcidid>https://orcid.org/0000-0002-7460-0143</orcidid><orcidid>https://orcid.org/0000-0001-7176-1913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2020-08, Vol.5 (30), p.18849-18861
issn 2470-1343
2470-1343
language eng
recordid cdi_pubmed_primary_32775887
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society (ACS) Open Access; PubMed Central
subjects Chemistry
Chemistry, Multidisciplinary
Physical Sciences
Science & Technology
title Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-covalent%20Functionalization%20of%20Graphene%20to%20Tune%20Its%20Band%20Gap%20and%20Stabilize%20Metal%20Nanoparticles%20on%20Its%20Surface&rft.jtitle=ACS%20omega&rft.au=Arranz-Mascaro%CC%81s,%20Paloma&rft.date=2020-08-04&rft.volume=5&rft.issue=30&rft.spage=18849&rft.epage=18861&rft.pages=18849-18861&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.0c02006&rft_dat=%3Cproquest_pubme%3E2432859679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432859679&rft_id=info:pmid/32775887&rft_doaj_id=oai_doaj_org_article_046e681700e24667ba254b5db86bf642&rfr_iscdi=true