A Graph-Based Approach for the DNA Word Design Problem

The aim of this paper is to improve the best known solution of an important problem, the DNA Word Design problem, which has its roots in Bioinformatics and Coding Theory. The problem is to design DNA codes that satisfy some combinatorial constraints. The constraints considered are: minimum Hamming d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2747-2752
Hauptverfasser: Luncasu, Victor, Raschip, Madalina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2752
container_issue 6
container_start_page 2747
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Luncasu, Victor
Raschip, Madalina
description The aim of this paper is to improve the best known solution of an important problem, the DNA Word Design problem, which has its roots in Bioinformatics and Coding Theory. The problem is to design DNA codes that satisfy some combinatorial constraints. The constraints considered are: minimum Hamming distance, fixed GC content and the reverse complement Hamming distance. The problem is modeled as a maximum independent set problem. Existing complex approaches for the maximum independent set problem, suitable for large graphs, were tested. In order to tackle large instances, libraries for external memory computations and sampling techniques were investigated. Eventually, we succeed in finding good lower bounds for the instances that were analyzed.
doi_str_mv 10.1109/TCBB.2020.3008346
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32750888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9137668</ieee_id><sourcerecordid>2607896247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1de068e35c624ca811b61825666b66447403a1add8089f20bd91f7edc4f243d83</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlZ_gAiy4MXL1snHzibHfmgVinqoeAzZTda2tN2adA_-e7O09uBpBuZ5h5eHkGsKfUpBPcxGw2GfAYM-B5Bc4Anp0izLU6VQnLa7yNJMIe-QixCWAEwoEOekw1megZSyS3CQTLzZztOhCc4mg-3W16acJ1Xtk93cJePXQfJZe5uMXVh8bZJ3Xxcrt74kZ5VZBXd1mD3y8fQ4Gz2n07fJy2gwTUuu2C6l1gFKx7MSmSiNpLRAKlmGiAWiELkAbqixVoJUFYPCKlrlzpaiYoJbyXvkfv831vpuXNjp9SKUbrUyG1c3QUcKEBlTENG7f-iybvwmttMMIZcqVsgjRfdU6esQvKv01i_Wxv9oCrqVqlupupWqD1Jj5vbwuSnWzh4TfxYjcLMHFs6541lRniNK_gtlFnah</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607896247</pqid></control><display><type>article</type><title>A Graph-Based Approach for the DNA Word Design Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Luncasu, Victor ; Raschip, Madalina</creator><creatorcontrib>Luncasu, Victor ; Raschip, Madalina</creatorcontrib><description>The aim of this paper is to improve the best known solution of an important problem, the DNA Word Design problem, which has its roots in Bioinformatics and Coding Theory. The problem is to design DNA codes that satisfy some combinatorial constraints. The constraints considered are: minimum Hamming distance, fixed GC content and the reverse complement Hamming distance. The problem is modeled as a maximum independent set problem. Existing complex approaches for the maximum independent set problem, suitable for large graphs, were tested. In order to tackle large instances, libraries for external memory computations and sampling techniques were investigated. Eventually, we succeed in finding good lower bounds for the instances that were analyzed.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.3008346</identifier><identifier>PMID: 32750888</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Base Composition - genetics ; Bioinformatics ; Combinatorial analysis ; Computational Biology - methods ; Computational modeling ; Computers, Molecular ; Deoxyribonucleic acid ; Design ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - ultrastructure ; DNA computing ; DNA word design ; Evolutionary computation ; Genetic communication ; Hamming distance ; Lower bounds ; maximum independent set</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2747-2752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1de068e35c624ca811b61825666b66447403a1add8089f20bd91f7edc4f243d83</citedby><cites>FETCH-LOGICAL-c392t-1de068e35c624ca811b61825666b66447403a1add8089f20bd91f7edc4f243d83</cites><orcidid>0000-0003-0020-636X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9137668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9137668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32750888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luncasu, Victor</creatorcontrib><creatorcontrib>Raschip, Madalina</creatorcontrib><title>A Graph-Based Approach for the DNA Word Design Problem</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The aim of this paper is to improve the best known solution of an important problem, the DNA Word Design problem, which has its roots in Bioinformatics and Coding Theory. The problem is to design DNA codes that satisfy some combinatorial constraints. The constraints considered are: minimum Hamming distance, fixed GC content and the reverse complement Hamming distance. The problem is modeled as a maximum independent set problem. Existing complex approaches for the maximum independent set problem, suitable for large graphs, were tested. In order to tackle large instances, libraries for external memory computations and sampling techniques were investigated. Eventually, we succeed in finding good lower bounds for the instances that were analyzed.</description><subject>Algorithms</subject><subject>Base Composition - genetics</subject><subject>Bioinformatics</subject><subject>Combinatorial analysis</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Computers, Molecular</subject><subject>Deoxyribonucleic acid</subject><subject>Design</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - ultrastructure</subject><subject>DNA computing</subject><subject>DNA word design</subject><subject>Evolutionary computation</subject><subject>Genetic communication</subject><subject>Hamming distance</subject><subject>Lower bounds</subject><subject>maximum independent set</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlZ_gAiy4MXL1snHzibHfmgVinqoeAzZTda2tN2adA_-e7O09uBpBuZ5h5eHkGsKfUpBPcxGw2GfAYM-B5Bc4Anp0izLU6VQnLa7yNJMIe-QixCWAEwoEOekw1megZSyS3CQTLzZztOhCc4mg-3W16acJ1Xtk93cJePXQfJZe5uMXVh8bZJ3Xxcrt74kZ5VZBXd1mD3y8fQ4Gz2n07fJy2gwTUuu2C6l1gFKx7MSmSiNpLRAKlmGiAWiELkAbqixVoJUFYPCKlrlzpaiYoJbyXvkfv831vpuXNjp9SKUbrUyG1c3QUcKEBlTENG7f-iybvwmttMMIZcqVsgjRfdU6esQvKv01i_Wxv9oCrqVqlupupWqD1Jj5vbwuSnWzh4TfxYjcLMHFs6541lRniNK_gtlFnah</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Luncasu, Victor</creator><creator>Raschip, Madalina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0020-636X</orcidid></search><sort><creationdate>20211101</creationdate><title>A Graph-Based Approach for the DNA Word Design Problem</title><author>Luncasu, Victor ; Raschip, Madalina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1de068e35c624ca811b61825666b66447403a1add8089f20bd91f7edc4f243d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Base Composition - genetics</topic><topic>Bioinformatics</topic><topic>Combinatorial analysis</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Computers, Molecular</topic><topic>Deoxyribonucleic acid</topic><topic>Design</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - ultrastructure</topic><topic>DNA computing</topic><topic>DNA word design</topic><topic>Evolutionary computation</topic><topic>Genetic communication</topic><topic>Hamming distance</topic><topic>Lower bounds</topic><topic>maximum independent set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luncasu, Victor</creatorcontrib><creatorcontrib>Raschip, Madalina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luncasu, Victor</au><au>Raschip, Madalina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graph-Based Approach for the DNA Word Design Problem</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2747</spage><epage>2752</epage><pages>2747-2752</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The aim of this paper is to improve the best known solution of an important problem, the DNA Word Design problem, which has its roots in Bioinformatics and Coding Theory. The problem is to design DNA codes that satisfy some combinatorial constraints. The constraints considered are: minimum Hamming distance, fixed GC content and the reverse complement Hamming distance. The problem is modeled as a maximum independent set problem. Existing complex approaches for the maximum independent set problem, suitable for large graphs, were tested. In order to tackle large instances, libraries for external memory computations and sampling techniques were investigated. Eventually, we succeed in finding good lower bounds for the instances that were analyzed.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32750888</pmid><doi>10.1109/TCBB.2020.3008346</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0020-636X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2747-2752
issn 1545-5963
1557-9964
language eng
recordid cdi_pubmed_primary_32750888
source IEEE Electronic Library (IEL)
subjects Algorithms
Base Composition - genetics
Bioinformatics
Combinatorial analysis
Computational Biology - methods
Computational modeling
Computers, Molecular
Deoxyribonucleic acid
Design
DNA
DNA - chemistry
DNA - genetics
DNA - ultrastructure
DNA computing
DNA word design
Evolutionary computation
Genetic communication
Hamming distance
Lower bounds
maximum independent set
title A Graph-Based Approach for the DNA Word Design Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graph-Based%20Approach%20for%20the%20DNA%20Word%20Design%20Problem&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Luncasu,%20Victor&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2747&rft.epage=2752&rft.pages=2747-2752&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.3008346&rft_dat=%3Cproquest_RIE%3E2607896247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607896247&rft_id=info:pmid/32750888&rft_ieee_id=9137668&rfr_iscdi=true