Histone deacetylase inhibition promotes regenerative neurogenesis after stab wound injury in the adult zebrafish optic tectum

The central nervous system (CNS) of adult zebrafish is capable of recovering from injury, unlike the CNS of mammals such as humans or rodents. Previously, we established a stab wound injury model of the optic tectum (OT) in the adult zebrafish and showed that the radial glial cells (RG) proliferatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2020-08, Vol.529 (2), p.366-371
Hauptverfasser: Kiyooka, Mariko, Shimizu, Yuki, Ohshima, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The central nervous system (CNS) of adult zebrafish is capable of recovering from injury, unlike the CNS of mammals such as humans or rodents. Previously, we established a stab wound injury model of the optic tectum (OT) in the adult zebrafish and showed that the radial glial cells (RG) proliferation and neuronal differentiation contributes to OT regeneration. In the present study, we analyzed the function of histone deacetylases (HDACs) as potential regulators of OT regeneration. The expression of both hdac1 and hdac3 was found to be significantly decreased in the injured OT. In order to analyze the roles of HDACs in RG proliferation and differentiation after injury, we performed pharmacological experiments using the HDAC inhibitor trichostatin A. We found that HDAC inhibition after stab wound injury suppressed RG proliferation but promoted neuronal differentiation. Moreover, HDAC inhibition suppressed the injury-induced decline in expression of Notch signaling target genes, her4.1 and her6 after OT injury. These results suggest that HDACs regulate regenerative neurogenesis through changes in Notch target gene expression by histone deacetylation. HDACs and histone acetylation are promising molecular targets for neuronal regeneration and further studies about the molecular mechanisms behind the regulation of regeneration by histone acetylation are necessary. •HDAC inhibition promotes the differentiation of radial glia into neurons after optic tectum injury.•HDAC inhibition suppresses the proliferation of radial glia after stab wound injury.•Expression of hdac1 and hdac3 declines after optic tectum injury.•HDAC inhibition suppresses the declines of Notch target genes her4.1 and her6 in the injured tectum.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2020.06.025