Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction

Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural dynamics (Melville, N.Y.) N.Y.), 2020-05, Vol.7 (3), p.034305-034305
Hauptverfasser: Walton, Ian M., Cox, Jordan M., Myers, Shea D., Benson, Cassidy A., Mitchell, Travis B., Bateman, Gage S., Sylvester, Eric D., Chen, Yu-Sheng, Benedict, Jason B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034305
container_issue 3
container_start_page 034305
container_title Structural dynamics (Melville, N.Y.)
container_volume 7
creator Walton, Ian M.
Cox, Jordan M.
Myers, Shea D.
Benson, Cassidy A.
Mitchell, Travis B.
Bateman, Gage S.
Sylvester, Eric D.
Chen, Yu-Sheng
Benedict, Jason B.
description Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.
doi_str_mv 10.1063/4.0000015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32637460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac4506c43a05428c864bd1803d9538f7</doaj_id><sourcerecordid>2421462668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</originalsourceid><addsrcrecordid>eNp9kstu1DAUQCMEolXpgh9AFmwoUorfSTZIqOVRqRIbWFuOHx0PiT3YTtvZ8Q_8IV-C0wylRQJvbN17fHyvdavqKYLHCHLymh7DeSH2oNrHBHd10zTtwzvnveowpfWMIMwaSh5XewRz0lAO96vp1GQTR-dldsGDYEFeGaDNaqvjEtrIvLqSW-A8kMAO5tr1gwGjyXL4-f1HiBfSOwVslKO5CvEr6LdAb70cS7BcSS5P4LqORaCdLZSapU-qR1YOyRzu9oPqy_t3n08-1uefPpydvD2vFW0Rqy3lrUSc4JZbxLm1CvcdUwgThlWDrGVUdpRoAwlEnYJIY0hhiyhWXW9L5qA6W7w6yLXYRDfKuBVBOnETKMULGbNTgxFSUQa5okRCRnGrWk57jVpIdMdIa5vierO4NlM_Gq2Mz1EO96T3M96txEW4FA1BnCFSBM8XQUjZiaRcNmqlgvdGZVG6pJi2BXq5eyWGb5NJWYwuKTMM0pswJYEpRpRjzmf0xV_oOkzRl_-cqY42kJG57KOFUjGkFI29rRhBMQ-QoGI3QIV9drfFW_L3uBTg1QLM1d-Mx39t_4QvQ_wDio225BfRbNuZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429470537</pqid></control><display><type>article</type><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</creator><creatorcontrib>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</creatorcontrib><description>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000015</identifier><identifier>PMID: 32637460</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Automation ; Binding sites ; Catalysis ; Crystal structure ; Data collection ; Dehydration ; Experiments ; Flexibility ; Functional materials ; Gases ; Ligands ; Metal-organic frameworks ; Methods ; Nitrogen ; Single crystals ; X-ray diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034305-034305</ispartof><rights>Author(s)</rights><rights>2020 Author(s).</rights><rights>2020 Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Author(s). 2020 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</citedby><cites>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</cites><orcidid>0000-0002-8992-7165 ; 0000-0002-6844-1596 ; 0000000289927165 ; 0000000268441596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32637460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1634248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Ian M.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Myers, Shea D.</creatorcontrib><creatorcontrib>Benson, Cassidy A.</creatorcontrib><creatorcontrib>Mitchell, Travis B.</creatorcontrib><creatorcontrib>Bateman, Gage S.</creatorcontrib><creatorcontrib>Sylvester, Eric D.</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Benedict, Jason B.</creatorcontrib><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</description><subject>Automation</subject><subject>Binding sites</subject><subject>Catalysis</subject><subject>Crystal structure</subject><subject>Data collection</subject><subject>Dehydration</subject><subject>Experiments</subject><subject>Flexibility</subject><subject>Functional materials</subject><subject>Gases</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Methods</subject><subject>Nitrogen</subject><subject>Single crystals</subject><subject>X-ray diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUQCMEolXpgh9AFmwoUorfSTZIqOVRqRIbWFuOHx0PiT3YTtvZ8Q_8IV-C0wylRQJvbN17fHyvdavqKYLHCHLymh7DeSH2oNrHBHd10zTtwzvnveowpfWMIMwaSh5XewRz0lAO96vp1GQTR-dldsGDYEFeGaDNaqvjEtrIvLqSW-A8kMAO5tr1gwGjyXL4-f1HiBfSOwVslKO5CvEr6LdAb70cS7BcSS5P4LqORaCdLZSapU-qR1YOyRzu9oPqy_t3n08-1uefPpydvD2vFW0Rqy3lrUSc4JZbxLm1CvcdUwgThlWDrGVUdpRoAwlEnYJIY0hhiyhWXW9L5qA6W7w6yLXYRDfKuBVBOnETKMULGbNTgxFSUQa5okRCRnGrWk57jVpIdMdIa5vierO4NlM_Gq2Mz1EO96T3M96txEW4FA1BnCFSBM8XQUjZiaRcNmqlgvdGZVG6pJi2BXq5eyWGb5NJWYwuKTMM0pswJYEpRpRjzmf0xV_oOkzRl_-cqY42kJG57KOFUjGkFI29rRhBMQ-QoGI3QIV9drfFW_L3uBTg1QLM1d-Mx39t_4QvQ_wDio225BfRbNuZ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Walton, Ian M.</creator><creator>Cox, Jordan M.</creator><creator>Myers, Shea D.</creator><creator>Benson, Cassidy A.</creator><creator>Mitchell, Travis B.</creator><creator>Bateman, Gage S.</creator><creator>Sylvester, Eric D.</creator><creator>Chen, Yu-Sheng</creator><creator>Benedict, Jason B.</creator><general>American Institute of Physics, Inc</general><general>American Institute of Physics</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8992-7165</orcidid><orcidid>https://orcid.org/0000-0002-6844-1596</orcidid><orcidid>https://orcid.org/0000000289927165</orcidid><orcidid>https://orcid.org/0000000268441596</orcidid></search><sort><creationdate>20200501</creationdate><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><author>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Binding sites</topic><topic>Catalysis</topic><topic>Crystal structure</topic><topic>Data collection</topic><topic>Dehydration</topic><topic>Experiments</topic><topic>Flexibility</topic><topic>Functional materials</topic><topic>Gases</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Methods</topic><topic>Nitrogen</topic><topic>Single crystals</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Ian M.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Myers, Shea D.</creatorcontrib><creatorcontrib>Benson, Cassidy A.</creatorcontrib><creatorcontrib>Mitchell, Travis B.</creatorcontrib><creatorcontrib>Bateman, Gage S.</creatorcontrib><creatorcontrib>Sylvester, Eric D.</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Benedict, Jason B.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Ian M.</au><au>Cox, Jordan M.</au><au>Myers, Shea D.</au><au>Benson, Cassidy A.</au><au>Mitchell, Travis B.</au><au>Bateman, Gage S.</au><au>Sylvester, Eric D.</au><au>Chen, Yu-Sheng</au><au>Benedict, Jason B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>034305</spage><epage>034305</epage><pages>034305-034305</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>32637460</pmid><doi>10.1063/4.0000015</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8992-7165</orcidid><orcidid>https://orcid.org/0000-0002-6844-1596</orcidid><orcidid>https://orcid.org/0000000289927165</orcidid><orcidid>https://orcid.org/0000000268441596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-7778
ispartof Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034305-034305
issn 2329-7778
2329-7778
language eng
recordid cdi_pubmed_primary_32637460
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Automation
Binding sites
Catalysis
Crystal structure
Data collection
Dehydration
Experiments
Flexibility
Functional materials
Gases
Ligands
Metal-organic frameworks
Methods
Nitrogen
Single crystals
X-ray diffraction
title Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20dehydration%20pathway%20in%20a%20flexible%20metal%E2%80%93organic%20framework%20by%20dynamic%20in%20situ%20x-ray%20diffraction&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Walton,%20Ian%20M.&rft.date=2020-05-01&rft.volume=7&rft.issue=3&rft.spage=034305&rft.epage=034305&rft.pages=034305-034305&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000015&rft_dat=%3Cproquest_pubme%3E2421462668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429470537&rft_id=info:pmid/32637460&rft_doaj_id=oai_doaj_org_article_ac4506c43a05428c864bd1803d9538f7&rfr_iscdi=true