Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction
Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffr...
Gespeichert in:
Veröffentlicht in: | Structural dynamics (Melville, N.Y.) N.Y.), 2020-05, Vol.7 (3), p.034305-034305 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034305 |
---|---|
container_issue | 3 |
container_start_page | 034305 |
container_title | Structural dynamics (Melville, N.Y.) |
container_volume | 7 |
creator | Walton, Ian M. Cox, Jordan M. Myers, Shea D. Benson, Cassidy A. Mitchell, Travis B. Bateman, Gage S. Sylvester, Eric D. Chen, Yu-Sheng Benedict, Jason B. |
description | Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials. |
doi_str_mv | 10.1063/4.0000015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32637460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac4506c43a05428c864bd1803d9538f7</doaj_id><sourcerecordid>2421462668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</originalsourceid><addsrcrecordid>eNp9kstu1DAUQCMEolXpgh9AFmwoUorfSTZIqOVRqRIbWFuOHx0PiT3YTtvZ8Q_8IV-C0wylRQJvbN17fHyvdavqKYLHCHLymh7DeSH2oNrHBHd10zTtwzvnveowpfWMIMwaSh5XewRz0lAO96vp1GQTR-dldsGDYEFeGaDNaqvjEtrIvLqSW-A8kMAO5tr1gwGjyXL4-f1HiBfSOwVslKO5CvEr6LdAb70cS7BcSS5P4LqORaCdLZSapU-qR1YOyRzu9oPqy_t3n08-1uefPpydvD2vFW0Rqy3lrUSc4JZbxLm1CvcdUwgThlWDrGVUdpRoAwlEnYJIY0hhiyhWXW9L5qA6W7w6yLXYRDfKuBVBOnETKMULGbNTgxFSUQa5okRCRnGrWk57jVpIdMdIa5vierO4NlM_Gq2Mz1EO96T3M96txEW4FA1BnCFSBM8XQUjZiaRcNmqlgvdGZVG6pJi2BXq5eyWGb5NJWYwuKTMM0pswJYEpRpRjzmf0xV_oOkzRl_-cqY42kJG57KOFUjGkFI29rRhBMQ-QoGI3QIV9drfFW_L3uBTg1QLM1d-Mx39t_4QvQ_wDio225BfRbNuZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429470537</pqid></control><display><type>article</type><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</creator><creatorcontrib>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</creatorcontrib><description>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000015</identifier><identifier>PMID: 32637460</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Automation ; Binding sites ; Catalysis ; Crystal structure ; Data collection ; Dehydration ; Experiments ; Flexibility ; Functional materials ; Gases ; Ligands ; Metal-organic frameworks ; Methods ; Nitrogen ; Single crystals ; X-ray diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034305-034305</ispartof><rights>Author(s)</rights><rights>2020 Author(s).</rights><rights>2020 Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Author(s). 2020 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</citedby><cites>FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</cites><orcidid>0000-0002-8992-7165 ; 0000-0002-6844-1596 ; 0000000289927165 ; 0000000268441596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32637460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1634248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Ian M.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Myers, Shea D.</creatorcontrib><creatorcontrib>Benson, Cassidy A.</creatorcontrib><creatorcontrib>Mitchell, Travis B.</creatorcontrib><creatorcontrib>Bateman, Gage S.</creatorcontrib><creatorcontrib>Sylvester, Eric D.</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Benedict, Jason B.</creatorcontrib><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</description><subject>Automation</subject><subject>Binding sites</subject><subject>Catalysis</subject><subject>Crystal structure</subject><subject>Data collection</subject><subject>Dehydration</subject><subject>Experiments</subject><subject>Flexibility</subject><subject>Functional materials</subject><subject>Gases</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Methods</subject><subject>Nitrogen</subject><subject>Single crystals</subject><subject>X-ray diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUQCMEolXpgh9AFmwoUorfSTZIqOVRqRIbWFuOHx0PiT3YTtvZ8Q_8IV-C0wylRQJvbN17fHyvdavqKYLHCHLymh7DeSH2oNrHBHd10zTtwzvnveowpfWMIMwaSh5XewRz0lAO96vp1GQTR-dldsGDYEFeGaDNaqvjEtrIvLqSW-A8kMAO5tr1gwGjyXL4-f1HiBfSOwVslKO5CvEr6LdAb70cS7BcSS5P4LqORaCdLZSapU-qR1YOyRzu9oPqy_t3n08-1uefPpydvD2vFW0Rqy3lrUSc4JZbxLm1CvcdUwgThlWDrGVUdpRoAwlEnYJIY0hhiyhWXW9L5qA6W7w6yLXYRDfKuBVBOnETKMULGbNTgxFSUQa5okRCRnGrWk57jVpIdMdIa5vierO4NlM_Gq2Mz1EO96T3M96txEW4FA1BnCFSBM8XQUjZiaRcNmqlgvdGZVG6pJi2BXq5eyWGb5NJWYwuKTMM0pswJYEpRpRjzmf0xV_oOkzRl_-cqY42kJG57KOFUjGkFI29rRhBMQ-QoGI3QIV9drfFW_L3uBTg1QLM1d-Mx39t_4QvQ_wDio225BfRbNuZ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Walton, Ian M.</creator><creator>Cox, Jordan M.</creator><creator>Myers, Shea D.</creator><creator>Benson, Cassidy A.</creator><creator>Mitchell, Travis B.</creator><creator>Bateman, Gage S.</creator><creator>Sylvester, Eric D.</creator><creator>Chen, Yu-Sheng</creator><creator>Benedict, Jason B.</creator><general>American Institute of Physics, Inc</general><general>American Institute of Physics</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8992-7165</orcidid><orcidid>https://orcid.org/0000-0002-6844-1596</orcidid><orcidid>https://orcid.org/0000000289927165</orcidid><orcidid>https://orcid.org/0000000268441596</orcidid></search><sort><creationdate>20200501</creationdate><title>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</title><author>Walton, Ian M. ; Cox, Jordan M. ; Myers, Shea D. ; Benson, Cassidy A. ; Mitchell, Travis B. ; Bateman, Gage S. ; Sylvester, Eric D. ; Chen, Yu-Sheng ; Benedict, Jason B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-f468a163286f166ffc2b95c12352c71ff54a943de03019c01d20408142c9bf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Binding sites</topic><topic>Catalysis</topic><topic>Crystal structure</topic><topic>Data collection</topic><topic>Dehydration</topic><topic>Experiments</topic><topic>Flexibility</topic><topic>Functional materials</topic><topic>Gases</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Methods</topic><topic>Nitrogen</topic><topic>Single crystals</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Ian M.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Myers, Shea D.</creatorcontrib><creatorcontrib>Benson, Cassidy A.</creatorcontrib><creatorcontrib>Mitchell, Travis B.</creatorcontrib><creatorcontrib>Bateman, Gage S.</creatorcontrib><creatorcontrib>Sylvester, Eric D.</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Benedict, Jason B.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Ian M.</au><au>Cox, Jordan M.</au><au>Myers, Shea D.</au><au>Benson, Cassidy A.</au><au>Mitchell, Travis B.</au><au>Bateman, Gage S.</au><au>Sylvester, Eric D.</au><au>Chen, Yu-Sheng</au><au>Benedict, Jason B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>034305</spage><epage>034305</epage><pages>034305-034305</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>32637460</pmid><doi>10.1063/4.0000015</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8992-7165</orcidid><orcidid>https://orcid.org/0000-0002-6844-1596</orcidid><orcidid>https://orcid.org/0000000289927165</orcidid><orcidid>https://orcid.org/0000000268441596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-7778 |
ispartof | Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034305-034305 |
issn | 2329-7778 2329-7778 |
language | eng |
recordid | cdi_pubmed_primary_32637460 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Automation Binding sites Catalysis Crystal structure Data collection Dehydration Experiments Flexibility Functional materials Gases Ligands Metal-organic frameworks Methods Nitrogen Single crystals X-ray diffraction |
title | Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20dehydration%20pathway%20in%20a%20flexible%20metal%E2%80%93organic%20framework%20by%20dynamic%20in%20situ%20x-ray%20diffraction&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Walton,%20Ian%20M.&rft.date=2020-05-01&rft.volume=7&rft.issue=3&rft.spage=034305&rft.epage=034305&rft.pages=034305-034305&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000015&rft_dat=%3Cproquest_pubme%3E2421462668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429470537&rft_id=info:pmid/32637460&rft_doaj_id=oai_doaj_org_article_ac4506c43a05428c864bd1803d9538f7&rfr_iscdi=true |