Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound

Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2020-10, Vol.46 (10), p.2801-2809
Hauptverfasser: Liu, Shengnan, Neleman, Tara, Hartman, Eline M.J., Ligthart, Jurgen M.R., Witberg, Karen T., van der Steen, Antonius F.W., Wentzel, Jolanda J., Daemen, Joost, van Soest, Gijs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2809
container_issue 10
container_start_page 2801
container_title Ultrasound in medicine & biology
container_volume 46
creator Liu, Shengnan
Neleman, Tara
Hartman, Eline M.J.
Ligthart, Jurgen M.R.
Witberg, Karen T.
van der Steen, Antonius F.W.
Wentzel, Jolanda J.
Daemen, Joost
van Soest, Gijs
description Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was >0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.
doi_str_mv 10.1016/j.ultrasmedbio.2020.04.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32636052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562920302040</els_id><sourcerecordid>2421466683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-245b2878e7484219246adc4165521577e2f49e18b7fd1c53ab6f0a82fc43f4063</originalsourceid><addsrcrecordid>eNqNkVuL1DAYhoMo7rj6F6R4JUjrl0OT1LuhnhYWRHBAvAlpmkiGTrIm6Yj_3uzOuHi5Vwnkeb_DE4ReYegwYP52361LSTof7Dz52BEg0AHrgJJHaIOlGFoy4O-P0QYo4LbnZLhAz3LeA4DgVDxFF5RwyqEnG_Rju5Z40MXOzddVh-KLLv5om23ONtcOoTTRNWNMMej0pxn1YrzzpkIxNLvsw8_mKtRhjjqbddGp2d2NFtcwP0dPnF6yfXE-L9Hu44dv4-f2-sunq3F73RpGSWkJ6ycihbSCSUbwQBjXs2GY9z3BvRCWODZYLCfhZmx6qifuQEviatwx4PQSvT7VvUnx12pzUQefjV0WHWxcsyK1KuOcS1rRdyfUpJhzsk7dJH-oiykM6tat2qv_3apbtwqYqm5r-OW5zzrV5_voP5kVeHMCftspumy8DcbeY9V-z4UkgOuNQKXlw-nx7l9iGKvYUqPvT1FbtR69Teocn32ypqg5-ocs9BcIJbNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421466683</pqid></control><display><type>article</type><title>Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Shengnan ; Neleman, Tara ; Hartman, Eline M.J. ; Ligthart, Jurgen M.R. ; Witberg, Karen T. ; van der Steen, Antonius F.W. ; Wentzel, Jolanda J. ; Daemen, Joost ; van Soest, Gijs</creator><creatorcontrib>Liu, Shengnan ; Neleman, Tara ; Hartman, Eline M.J. ; Ligthart, Jurgen M.R. ; Witberg, Karen T. ; van der Steen, Antonius F.W. ; Wentzel, Jolanda J. ; Daemen, Joost ; van Soest, Gijs</creatorcontrib><description>Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was &gt;0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2020.04.032</identifier><identifier>PMID: 32636052</identifier><language>eng</language><publisher>NEW YORK: Elsevier Inc</publisher><subject>Acoustics ; Automated quantification ; Calcified plaque ; Coronary artery disease ; Intravascular imaging ; Intravascular ultrasound ; Life Sciences &amp; Biomedicine ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology ; Technology</subject><ispartof>Ultrasound in medicine &amp; biology, 2020-10, Vol.46 (10), p.2801-2809</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000567820100020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c432t-245b2878e7484219246adc4165521577e2f49e18b7fd1c53ab6f0a82fc43f4063</citedby><cites>FETCH-LOGICAL-c432t-245b2878e7484219246adc4165521577e2f49e18b7fd1c53ab6f0a82fc43f4063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2020.04.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32636052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shengnan</creatorcontrib><creatorcontrib>Neleman, Tara</creatorcontrib><creatorcontrib>Hartman, Eline M.J.</creatorcontrib><creatorcontrib>Ligthart, Jurgen M.R.</creatorcontrib><creatorcontrib>Witberg, Karen T.</creatorcontrib><creatorcontrib>van der Steen, Antonius F.W.</creatorcontrib><creatorcontrib>Wentzel, Jolanda J.</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><title>Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound</title><title>Ultrasound in medicine &amp; biology</title><addtitle>ULTRASOUND MED BIOL</addtitle><addtitle>Ultrasound Med Biol</addtitle><description>Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was &gt;0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.</description><subject>Acoustics</subject><subject>Automated quantification</subject><subject>Calcified plaque</subject><subject>Coronary artery disease</subject><subject>Intravascular imaging</subject><subject>Intravascular ultrasound</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkVuL1DAYhoMo7rj6F6R4JUjrl0OT1LuhnhYWRHBAvAlpmkiGTrIm6Yj_3uzOuHi5Vwnkeb_DE4ReYegwYP52361LSTof7Dz52BEg0AHrgJJHaIOlGFoy4O-P0QYo4LbnZLhAz3LeA4DgVDxFF5RwyqEnG_Rju5Z40MXOzddVh-KLLv5om23ONtcOoTTRNWNMMej0pxn1YrzzpkIxNLvsw8_mKtRhjjqbddGp2d2NFtcwP0dPnF6yfXE-L9Hu44dv4-f2-sunq3F73RpGSWkJ6ycihbSCSUbwQBjXs2GY9z3BvRCWODZYLCfhZmx6qifuQEviatwx4PQSvT7VvUnx12pzUQefjV0WHWxcsyK1KuOcS1rRdyfUpJhzsk7dJH-oiykM6tat2qv_3apbtwqYqm5r-OW5zzrV5_voP5kVeHMCftspumy8DcbeY9V-z4UkgOuNQKXlw-nx7l9iGKvYUqPvT1FbtR69Teocn32ypqg5-ocs9BcIJbNQ</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Liu, Shengnan</creator><creator>Neleman, Tara</creator><creator>Hartman, Eline M.J.</creator><creator>Ligthart, Jurgen M.R.</creator><creator>Witberg, Karen T.</creator><creator>van der Steen, Antonius F.W.</creator><creator>Wentzel, Jolanda J.</creator><creator>Daemen, Joost</creator><creator>van Soest, Gijs</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202010</creationdate><title>Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound</title><author>Liu, Shengnan ; Neleman, Tara ; Hartman, Eline M.J. ; Ligthart, Jurgen M.R. ; Witberg, Karen T. ; van der Steen, Antonius F.W. ; Wentzel, Jolanda J. ; Daemen, Joost ; van Soest, Gijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-245b2878e7484219246adc4165521577e2f49e18b7fd1c53ab6f0a82fc43f4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Automated quantification</topic><topic>Calcified plaque</topic><topic>Coronary artery disease</topic><topic>Intravascular imaging</topic><topic>Intravascular ultrasound</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shengnan</creatorcontrib><creatorcontrib>Neleman, Tara</creatorcontrib><creatorcontrib>Hartman, Eline M.J.</creatorcontrib><creatorcontrib>Ligthart, Jurgen M.R.</creatorcontrib><creatorcontrib>Witberg, Karen T.</creatorcontrib><creatorcontrib>van der Steen, Antonius F.W.</creatorcontrib><creatorcontrib>Wentzel, Jolanda J.</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shengnan</au><au>Neleman, Tara</au><au>Hartman, Eline M.J.</au><au>Ligthart, Jurgen M.R.</au><au>Witberg, Karen T.</au><au>van der Steen, Antonius F.W.</au><au>Wentzel, Jolanda J.</au><au>Daemen, Joost</au><au>van Soest, Gijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><stitle>ULTRASOUND MED BIOL</stitle><addtitle>Ultrasound Med Biol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>46</volume><issue>10</issue><spage>2801</spage><epage>2809</epage><pages>2801-2809</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was &gt;0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-guided coronary interventions.</abstract><cop>NEW YORK</cop><pub>Elsevier Inc</pub><pmid>32636052</pmid><doi>10.1016/j.ultrasmedbio.2020.04.032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2020-10, Vol.46 (10), p.2801-2809
issn 0301-5629
1879-291X
language eng
recordid cdi_pubmed_primary_32636052
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Acoustics
Automated quantification
Calcified plaque
Coronary artery disease
Intravascular imaging
Intravascular ultrasound
Life Sciences & Biomedicine
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
Technology
title Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T01%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Quantitative%20Assessment%20of%20Coronary%20Calcification%20Using%20Intravascular%20Ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Liu,%20Shengnan&rft.date=2020-10&rft.volume=46&rft.issue=10&rft.spage=2801&rft.epage=2809&rft.pages=2801-2809&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2020.04.032&rft_dat=%3Cproquest_pubme%3E2421466683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421466683&rft_id=info:pmid/32636052&rft_els_id=S0301562920302040&rfr_iscdi=true